using OpenCVForUnity.CoreModule;
using OpenCVForUnity.ImgprocModule;
using OpenCVForUnity.MlModule;
using OpenCVForUnity.UnityUtils;
using UnityEngine;
using UnityEngine.SceneManagement;
namespace OpenCVForUnityExample
{
///
/// KNN Example
/// An example to understand the concepts of the k-Nearest Neighbour (kNN) algorithm.
/// https://docs.opencv.org/4.x/d5/d26/tutorial_py_knn_understanding.html
///
public class KNNExample : MonoBehaviour
{
// Use this for initialization
void Start()
{
//if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console.
Utils.setDebugMode(true);
// Feature set containing (x,y) values of 25 known/training data
Mat trainData = new Mat(25, 2, CvType.CV_32FC1);
using (Mat trainDataInt = new Mat(25, 2, CvType.CV_16SC1))
{
Core.randu(trainDataInt, 0, 100); // random values
trainDataInt.convertTo(trainData, CvType.CV_32FC1);
}
//Debug.Log(trainData.dump());
// Label each one either Red or Blue with numbers 0 and 1
Mat responses = new Mat(25, 1, CvType.CV_32FC1);
using (Mat responsesInt = new Mat(25, 1, CvType.CV_16SC1))
{
Core.randu(responsesInt, 0, 2); // random values
responsesInt.convertTo(responses, CvType.CV_32FC1);
}
//Debug.Log(responses.dump());
KNearest knn = KNearest.create();
knn.train(trainData, Ml.ROW_SAMPLE, responses);
Mat newcomer = new Mat(1, 2, CvType.CV_32FC1, new Scalar(50, 50));
Mat results = new Mat();
Mat neighbours = new Mat();
Mat dist = new Mat();
knn.findNearest(newcomer, 3, results, neighbours, dist);
Mat plotMat = new Mat(500, 500, CvType.CV_8UC4, new Scalar(255, 255, 255, 255));
// Take Red neighbours and plot them
// Take Blue neighbours and plot them
for (int i = 0; i < trainData.rows(); i++)
{
bool red = ((int)responses.get(i, 0)[0] == 0);
double x = trainData.get(i, 0)[0];
double y = trainData.get(i, 1)[0];
Imgproc.circle(plotMat, new Point(x * 5f, y * 5f), 5, red ? new Scalar(255, 0, 0, 255) : new Scalar(0, 0, 255, 255), -1);
}
// Plot newcomer and the neighbours distance circle
Imgproc.circle(plotMat, new Point(50f * 5f, 50f * 5f), 5, new Scalar(0, 255, 0, 255), -1);
Imgproc.circle(plotMat, new Point(50f * 5f, 50f * 5f), (int)(Mathf.Sqrt((float)dist.get(0, 2)[0]) * 5f), new Scalar(0, 255, 0, 255), 1);
Debug.Log("0:Red / 1:Blue");
Debug.Log("result: " + results.dump());
Debug.Log("neighbours: " + neighbours.dump());
Debug.Log("distance: " + dist.dump());
Imgproc.putText(plotMat, "0:Red / 1:Blue", new Point(5, 30), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
Imgproc.putText(plotMat, "result: " + results.dump(), new Point(5, 65), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
Imgproc.putText(plotMat, "neighbours: " + neighbours.dump(), new Point(5, 100), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
Imgproc.putText(plotMat, "distance: " + dist.dump(), new Point(5, 135), Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new Scalar(0, 0, 0, 255));
Texture2D texture = new Texture2D(plotMat.cols(), plotMat.rows(), TextureFormat.RGBA32, false);
Utils.matToTexture2D(plotMat, texture);
gameObject.GetComponent().material.mainTexture = texture;
Utils.setDebugMode(false);
}
// Update is called once per frame
void Update()
{
}
///
/// Raises the back button click event.
///
public void OnBackButtonClick()
{
SceneManager.LoadScene("OpenCVForUnityExample");
}
}
}