using UnityEngine; using UnityEngine.UI; using UnityEngine.SceneManagement; using System; using System.Collections; using System.Collections.Generic; using OpenCVForUnity.CoreModule; using OpenCVForUnity.UnityUtils; using OpenCVForUnity.UtilsModule; using Range = OpenCVForUnity.CoreModule.Range; namespace OpenCVForUnityExample { /// /// Mat Basic Processing Example /// public class MatBasicProcessingExample : MonoBehaviour { public ScrollRect exampleCodeScrollRect; public UnityEngine.UI.Text exampleCodeText; public ScrollRect executionResultScrollRect; public UnityEngine.UI.Text executionResultText; // Use this for initialization IEnumerator Start() { // fix the screen orientation. Screen.orientation = ScreenOrientation.LandscapeLeft; // wait for the screen orientation to change. yield return null; } // Update is called once per frame void Update() { } /// /// Raises the destroy event. /// void OnDestroy() { Screen.orientation = ScreenOrientation.AutoRotation; } private void UpdateScrollRect() { exampleCodeScrollRect.verticalNormalizedPosition = executionResultScrollRect.verticalNormalizedPosition = 1f; } public void OnBackButtonClick() { SceneManager.LoadScene("OpenCVForUnityExample"); } public void OnInitializationExampleButtonClick() { // // initialization example // // 3x3 matrix (set array value) Mat mat1 = new Mat(3, 3, CvType.CV_64FC1); mat1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log("mat1=" + mat1.dump()); // 2x2 rotation matrix double angle = 30, a = Math.Cos(angle * Math.PI / 180), b = Math.Sin(angle * Math.PI / 180); Mat mat2 = new Mat(2, 2, CvType.CV_64FC1); mat2.put(0, 0, a, -b, b, a); Debug.Log("mat2=" + mat2.dump()); // 5x5 all 1's matrix Mat mat3 = Mat.ones(5, 5, CvType.CV_64FC1); Debug.Log("mat3=" + mat3.dump()); // 5x5 all zero's matrix Mat mat4 = Mat.zeros(5, 5, CvType.CV_64FC1); Debug.Log("mat4=" + mat4.dump()); // 5x5 identity matrix Mat mat5 = Mat.eye(5, 5, CvType.CV_64FC1); Debug.Log("mat5=" + mat5.dump()); // 3x3 initialize with a constant Mat mat6 = new Mat(3, 3, CvType.CV_64FC1, new Scalar(5)); Debug.Log("mat6=" + mat6.dump()); // 3x2 initialize with a uniform distribution random number Mat mat7 = new Mat(3, 2, CvType.CV_8UC1); Core.randu(mat7, 0, 256); Debug.Log("mat7=" + mat7.dump()); // 3x2 initialize with a normal distribution random number Mat mat8 = new Mat(3, 2, CvType.CV_8UC1); Core.randn(mat8, 128, 10); Debug.Log("mat8=" + mat8.dump()); // 2x2x3x4 matrix (4 dimensional array) int[] sizes = new int[] { 2, 2, 3, 4 }; Mat mat9 = new Mat(sizes, CvType.CV_8UC1, Scalar.all(0)); Debug.Log("mat9.dims=" + mat9.dims()); Debug.Log("mat9.rows=" + mat9.rows() + " //For Mats of 3 dimensions or more, rows == cols == -1"); Debug.Log("mat9.cols=" + mat9.cols()); exampleCodeText.text = @" // // initialization example // // 3x3 matrix (set array value) Mat mat1 = new Mat (3, 3, CvType.CV_64FC1); mat1.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log (""mat1="" + mat1.dump()); // 2x2 rotation matrix double angle = 30, a = Math.Cos(angle*Math.PI/180), b = Math.Sin(angle*Math.PI/180); Mat mat2 = new Mat (2, 2, CvType.CV_64FC1); mat2.put (0, 0, a, -b, b, a); Debug.Log (""mat2="" + mat2.dump()); // 5x5 all 1's matrix Mat mat3 = Mat.ones(5, 5, CvType.CV_64FC1); Debug.Log (""mat3="" + mat3.dump()); // 5x5 all zero's matrix Mat mat4 = Mat.zeros(5, 5, CvType.CV_64FC1); Debug.Log (""mat4="" + mat4.dump()); // 5x5 identity matrix Mat mat5 = Mat.eye(5, 5, CvType.CV_64FC1); Debug.Log (""mat5="" + mat5.dump()); // 3x3 initialize with a constant Mat mat6 = new Mat (3, 3, CvType.CV_64FC1, new Scalar(5)); Debug.Log (""mat6="" + mat6.dump()); // 3x2 initialize with a uniform distribution random number Mat mat7 = new Mat (3, 2, CvType.CV_8UC1); Core.randu (mat7, 0, 256); Debug.Log (""mat7="" + mat7.dump()); // 3x2 initialize with a normal distribution random number Mat mat8 = new Mat (3, 2, CvType.CV_8UC1); Core.randn (mat8, 128, 10); Debug.Log (""mat8="" + mat8.dump()); // 2x2x3x4 matrix (4 dimensional array) int[] sizes = new int[]{ 2, 2, 3, 4 }; Mat mat9 = new Mat (sizes, CvType.CV_8UC1, Scalar.all (0)); Debug.Log (""mat9.dims="" + mat9.dims()); Debug.Log (""mat9.rows="" + mat9.rows () + "" //For Mats of 3 dimensions or more, rows == cols == -1""); Debug.Log (""mat9.cols="" + mat9.cols ()); "; executionResultText.text = "mat1=" + mat1.dump() + "\n"; executionResultText.text += "mat2=" + mat2.dump() + "\n"; executionResultText.text += "mat3=" + mat3.dump() + "\n"; executionResultText.text += "mat4=" + mat4.dump() + "\n"; executionResultText.text += "mat5=" + mat5.dump() + "\n"; executionResultText.text += "mat6=" + mat6.dump() + "\n"; executionResultText.text += "mat7=" + mat7.dump() + "\n"; executionResultText.text += "mat8=" + mat8.dump() + "\n"; executionResultText.text += "mat9.dims=" + mat9.dims() + "\n"; executionResultText.text += "mat9.rows=" + mat9.rows() + " //For Mats of 3 dimensions or more, rows == cols == -1" + "\n"; executionResultText.text += "mat9.cols=" + mat9.cols() + "\n"; UpdateScrollRect(); } public void OnMultiChannelExampleButtonClick() { // // multi channel example // // 64F, channels=1, 3x3 Mat mat1 = new Mat(3, 3, CvType.CV_64FC1); Debug.Log("mat1"); Debug.Log(" dim:" + mat1.dims() + " elemSize1:" + mat1.elemSize1() + " channel:" + mat1.channels()); // 64F, channels=10, 3x3 Debug.Log("mat2"); Mat mat2 = new Mat(3, 3, CvType.CV_64FC(10)); Debug.Log(" dim:" + mat2.dims() + " elemSize1:" + mat2.elemSize1() + " channels:" + mat2.channels()); // 64F, channles=1, 2x2x3x4 (4 dimensional array) Debug.Log("mat3"); int[] sizes = new int[] { 2, 2, 3, 4 }; Mat mat3 = new Mat(sizes, CvType.CV_64FC1); Debug.Log(" dim:" + mat3.dims() + " elemSize1:" + mat3.elemSize1() + " channels:" + mat3.channels()); exampleCodeText.text = @" // // multi channel example // // 64F, channels=1, 3x3 Mat mat1 = new Mat (3, 3, CvType.CV_64FC1); Debug.Log (""mat1""); Debug.Log ("" dim:"" + mat1.dims() + "" elemSize1:"" + mat1.elemSize1() + "" channel:"" + mat1.channels()); // 64F, channels=10, 3x3 Debug.Log (""mat2""); Mat mat2 = new Mat (3, 3, CvType.CV_64FC(10)); Debug.Log ("" dim:"" + mat2.dims() + "" elemSize1:"" + mat2.elemSize1() + "" channels:"" + mat2.channels()); // 64F, channles=1, 2x2x3x4 (4 dimensional array) Debug.Log (""mat3""); int[] sizes = new int[]{ 2, 2, 3, 4 }; Mat mat3 = new Mat (sizes, CvType.CV_64FC1); Debug.Log ("" dim:"" + mat3.dims() + "" elemSize1:"" + mat3.elemSize1() + "" channels:"" + mat3.channels()); "; executionResultText.text = "mat1" + "\n"; executionResultText.text += " dim:" + mat1.dims() + " elemSize1:" + mat1.elemSize1() + " channels:" + mat1.channels() + "\n"; executionResultText.text += "mat2" + "\n"; executionResultText.text += " dim:" + mat2.dims() + " elemSize1:" + mat2.elemSize1() + " channels:" + mat2.channels() + "\n"; executionResultText.text += "mat3" + "\n"; executionResultText.text += " dim:" + mat3.dims() + " elemSize1:" + mat3.elemSize1() + " channels:" + mat3.channels() + "\n"; UpdateScrollRect(); } public void OnDumpExampleButtonClick() { // // dump example // // 8U, channels=1, 3x3 Mat mat1 = new Mat(3, 3, CvType.CV_8UC1, new Scalar(1)); // 8U, channels=4, 3x3 Mat mat2 = new Mat(3, 3, CvType.CV_8UC4, new Scalar(1, 2, 3, 4)); // dump Debug.Log("mat1=" + mat1); Debug.Log("mat1.dump()=" + mat1.dump()); Debug.Log("mat1=" + mat2); Debug.Log("mat2.dump()=" + mat2.dump()); exampleCodeText.text = @" // // dump example // // 8U, channels=1, 3x3 Mat mat1 = new Mat (3, 3, CvType.CV_8UC1, new Scalar(1)); // 8U, channels=4, 3x3 Mat mat2 = new Mat (3, 3, CvType.CV_8UC4, new Scalar(1, 2, 3, 4)); // dump Debug.Log (""mat1="" + mat1); Debug.Log (""mat1.dump()="" + mat1.dump()); Debug.Log (""mat1="" + mat2); Debug.Log (""mat2.dump()="" + mat2.dump()); "; executionResultText.text = "mat1=" + mat1 + "\n"; executionResultText.text += "mat1.dump()=" + mat1.dump() + "\n"; executionResultText.text += "mat2=" + mat2 + "\n"; executionResultText.text += "mat2.dump()=" + mat2.dump() + "\n"; UpdateScrollRect(); } public void OnCVExceptionHandlingExampleButtonClick() { // // CVException handling example // // 32F, channels=1, 3x3 Mat m1 = new Mat(3, 3, CvType.CV_32FC1); m1.put(0, 0, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f); // 8U, channels=1, 3x3 Mat m2 = new Mat(3, 3, CvType.CV_8UC1); m2.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // dump Debug.Log("m1=" + m1); Debug.Log("m1.dump()=" + m1.dump()); Debug.Log("m2=" + m2); Debug.Log("m2.dump()=" + m2.dump()); executionResultText.text = "m1=" + m1 + "\n"; executionResultText.text += "m1.dump()=" + m1.dump() + "\n"; executionResultText.text += "m2=" + m2 + "\n"; executionResultText.text += "m2.dump()=" + m2.dump() + "\n"; // CVException handling // Publish CVException to Debug.LogError. Utils.setDebugMode(true, false); Mat m3 = m1 / m2; // element type is different. Debug.Log("m3=" + m3); executionResultText.text += "m3=" + m3 + "\n"; Utils.setDebugMode(false); // Throw CVException. Utils.setDebugMode(true, true); try { Mat m4 = m1 / m2; // element type is different. Debug.Log("m4=" + m4); executionResultText.text += "m4=" + m4 + "\n"; } catch (Exception e) { Debug.Log("CVException: " + e); executionResultText.text += "CVException: " + e + "\n"; } Utils.setDebugMode(false); exampleCodeText.text = @" // // CVException handling example // // 32F, channels=1, 3x3 Mat m1 = new Mat (3, 3, CvType.CV_32FC1); m1.put (0, 0, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f); // 8U, channels=1, 3x3 Mat m2 = new Mat (3, 3, CvType.CV_8UC1); m2.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // dump Debug.Log (""m1="" + m1); Debug.Log (""m1.dump()="" + m1.dump ()); Debug.Log (""m2="" + m2); Debug.Log (""m2.dump()="" + m2.dump ()); // CVException handling // Publish CVException to Debug.LogError. Utils.setDebugMode (true, false); Mat m3 = m1 / m2; Debug.Log(""m3="" + m3); Utils.setDebugMode (false); // Throw CVException. Utils.setDebugMode (true, true); try { Mat m4 = m1 / m2; Debug.Log(""m4="" + m4); } catch (Exception e) { Debug.Log (""CVException: "" + e); } Utils.setDebugMode (false); "; UpdateScrollRect(); } public void OnPropertyExampleButtonClick() { // // property example // // 64F, channels=1, 3x4 Mat mat1 = new Mat(3, 4, CvType.CV_64FC1); // number of rows Debug.Log("rows:" + mat1.rows()); // number of columns Debug.Log("cols:" + mat1.cols()); // number of dimensions Debug.Log("dims:" + mat1.dims()); // size Debug.Log("size[]:" + mat1.size().width + ", " + mat1.size().height); // bit depth ID Debug.Log("depth (ID):" + mat1.depth() + "(=" + CvType.CV_64F + ")"); // number of channels Debug.Log("channels:" + mat1.channels()); // size of one element Debug.Log("elemSize:" + mat1.elemSize() + "[byte]"); // size for one channel in one element Debug.Log("elemSize1 (elemSize/channels):" + mat1.elemSize1() + "[byte]"); // total number of elements Debug.Log("total:" + mat1.total()); // size of step Debug.Log("step (step1*elemSize1):" + mat1.step1() * mat1.elemSize1() + "[byte]"); // total number of channels within one step Debug.Log("step1 (step/elemSize1):" + mat1.step1()); // is the data continuous? Debug.Log("isContinuous:" + mat1.isContinuous()); // is it a submatrix? Debug.Log("isSubmatrix:" + mat1.isSubmatrix()); // is the data empty? Debug.Log("empty:" + mat1.empty()); Debug.Log("=============================="); // 32FC, channels=5, 4x5, 3x4 Submatrix Mat mat2 = new Mat(4, 5, CvType.CV_32FC(5)); OpenCVForUnity.CoreModule.Rect roi_rect = new OpenCVForUnity.CoreModule.Rect(0, 0, 3, 4); Mat r1 = new Mat(mat2, roi_rect); // number of rows Debug.Log("rows:" + r1.rows()); // number of columns Debug.Log("cols:" + r1.cols()); // number of dimensions Debug.Log("dims:" + r1.dims()); // size Debug.Log("size[]:" + r1.size().width + ", " + r1.size().height); // bit depth ID Debug.Log("depth (ID):" + r1.depth() + "(=" + CvType.CV_32F + ")"); // number of channels Debug.Log("channels:" + r1.channels()); // size of one element Debug.Log("elemSize:" + r1.elemSize() + "[byte]"); // size for one channel in one element Debug.Log("elemSize1 (elemSize/channels):" + r1.elemSize1() + "[byte]"); // total number of elements Debug.Log("total:" + r1.total()); // size of step Debug.Log("step (step1*elemSize1):" + r1.step1() * r1.elemSize1() + "[byte]"); // total number of channels within one step Debug.Log("step1 (step/elemSize1):" + r1.step1()); // is the data continuous? Debug.Log("isContinuous:" + r1.isContinuous()); // is it a submatrix? Debug.Log("isSubmatrix:" + r1.isSubmatrix()); // is the data empty? Debug.Log("empty:" + r1.empty()); Debug.Log("=============================="); // 32S, channles=2, 2x3x3x4x6 (5 dimensional array) int[] sizes = new int[] { 2, 3, 3, 4, 6 }; Mat mat3 = new Mat(sizes, CvType.CV_32SC2); // number of rows Debug.Log("rows:" + mat3.rows()); // number of columns Debug.Log("cols:" + mat3.cols()); // number of dimensions Debug.Log("dims:" + mat3.dims()); // size string size = ""; for (int i = 0; i < mat3.dims(); ++i) { size += mat3.size(i) + ", "; } Debug.Log("size[]:" + size); // bit depth ID Debug.Log("depth (ID):" + mat3.depth() + "(=" + CvType.CV_32S + ")"); // number of channels Debug.Log("channels:" + mat3.channels()); // size of one element Debug.Log("elemSize:" + mat3.elemSize() + "[byte]"); // size for one channel in one element Debug.Log("elemSize1 (elemSize/channels):" + mat3.elemSize1() + "[byte]"); // total number of elements Debug.Log("total:" + mat3.total()); // size of step string step = ""; for (int i = 0; i < mat3.dims(); ++i) { step += mat3.step1(i) * mat3.elemSize1() + ", "; } Debug.Log("step (step1*elemSize1):" + step + "[byte]"); // total number of channels within one step Debug.Log("step1 (step/elemSize1):" + mat3.step1()); // is the data continuous? Debug.Log("isContinuous:" + mat3.isContinuous()); // is it a submatrix? Debug.Log("isSubmatrix:" + mat3.isSubmatrix()); // is the data empty? Debug.Log("empty:" + mat3.empty()); exampleCodeText.text = @" // // property example // // 64F, channels=1, 3x4 Mat mat1 = new Mat (3, 4, CvType.CV_64FC1); // number of rows Debug.Log (""rows:"" + mat1.rows ()); // number of columns Debug.Log (""cols:"" + mat1.cols ()); // number of dimensions Debug.Log (""dims:"" + mat1.dims ()); // size Debug.Log (""size[]:"" + mat1.size ().width + "", "" + mat1.size ().height); // bit depth ID Debug.Log (""depth (ID):"" + mat1.depth () + ""(="" + CvType.CV_64F + "")""); // number of channels Debug.Log (""channels:"" + mat1.channels ()); // size of one element Debug.Log (""elemSize:"" + mat1.elemSize () + ""[byte]""); // size for one channel in one element Debug.Log (""elemSize1 (elemSize/channels):"" + mat1.elemSize1 () + ""[byte]""); // total number of elements Debug.Log (""total:"" + mat1.total ()); // size of step Debug.Log (""step (step1*elemSize1):"" + mat1.step1 () * mat1.elemSize1 () + ""[byte]""); // total number of channels within one step Debug.Log (""step1 (step/elemSize1):"" + mat1.step1 ()); // is the data continuous? Debug.Log (""isContinuous:"" + mat1.isContinuous ()); // is it a submatrix? Debug.Log (""isSubmatrix:"" + mat1.isSubmatrix ()); // is the data empty? Debug.Log (""empty:"" + mat1.empty ()); Debug.Log (""==============================""); // 32FC, channels=5, 4x5, 3x4 Submatrix Mat mat2 = new Mat (4, 5, CvType.CV_32FC (5)); OpenCVForUnity.CoreModule.Rect roi_rect = new OpenCVForUnity.CoreModule.Rect (0, 0, 3, 4); Mat r1 = new Mat (mat2, roi_rect); // number of rows Debug.Log (""rows:"" + r1.rows ()); // number of columns Debug.Log (""cols:"" + r1.cols ()); // number of dimensions Debug.Log (""dims:"" + r1.dims ()); // size Debug.Log (""size[]:"" + r1.size ().width + "", "" + r1.size ().height); // bit depth ID Debug.Log (""depth (ID):"" + r1.depth () + ""(="" + CvType.CV_32F + "")""); // number of channels Debug.Log (""channels:"" + r1.channels ()); // size of one element Debug.Log (""elemSize:"" + r1.elemSize () + ""[byte]""); // size for one channel in one element Debug.Log (""elemSize1 (elemSize/channels):"" + r1.elemSize1 () + ""[byte]""); // total number of elements Debug.Log (""total:"" + r1.total ()); // size of step Debug.Log (""step (step1*elemSize1):"" + r1.step1 () * r1.elemSize1 () + ""[byte]""); // total number of channels within one step Debug.Log (""step1 (step/elemSize1):"" + r1.step1 ()); // is the data continuous? Debug.Log (""isContinuous:"" + r1.isContinuous ()); // is it a submatrix? Debug.Log (""isSubmatrix:"" + r1.isSubmatrix ()); // is the data empty? Debug.Log (""empty:"" + r1.empty ()); Debug.Log (""==============================""); // 32S, channles=2, 2x3x3x4x6 (5 dimensional array) int[] sizes = new int[]{ 2, 3, 3, 4, 6 }; Mat mat3 = new Mat (sizes, CvType.CV_32SC2); // number of rows Debug.Log (""rows:"" + mat3.rows ()); // number of columns Debug.Log (""cols:"" + mat3.cols ()); // number of dimensions Debug.Log (""dims:"" + mat3.dims ()); // size string size = """"; for (int i = 0; i < mat3.dims (); ++i) { size += mat3.size (i) + "", ""; } Debug.Log (""size[]:"" + size); // bit depth ID Debug.Log (""depth (ID):"" + mat3.depth () + ""(="" + CvType.CV_32S + "")""); // number of channels Debug.Log (""channels:"" + mat3.channels ()); // size of one element Debug.Log (""elemSize:"" + mat3.elemSize () + ""[byte]""); // size for one channel in one element Debug.Log (""elemSize1 (elemSize/channels):"" + mat3.elemSize1 () + ""[byte]""); // total number of elements Debug.Log (""total:"" + mat3.total ()); // size of step string step = """"; for (int i = 0; i < mat3.dims (); ++i) { step += mat3.step1 (i) * mat3.elemSize1 () + "", ""; } Debug.Log (""step (step1*elemSize1):"" + step + ""[byte]""); // total number of channels within one step Debug.Log (""step1 (step/elemSize1):"" + mat3.step1 ()); // is the data continuous? Debug.Log (""isContinuous:"" + mat3.isContinuous ()); // is it a submatrix? Debug.Log (""isSubmatrix:"" + mat3.isSubmatrix ()); // is the data empty? Debug.Log (""empty:"" + mat3.empty ()); "; executionResultText.text = "rows:" + mat1.rows() + "\n"; executionResultText.text += "cols:" + mat1.cols() + "\n"; executionResultText.text += "dims:" + mat1.dims() + "\n"; executionResultText.text += "size[]:" + mat1.size().width + ", " + mat1.size().height + "\n"; executionResultText.text += "depth (ID):" + mat1.depth() + "(=" + CvType.CV_64F + ")" + "\n"; executionResultText.text += "channels:" + mat1.channels() + "\n"; executionResultText.text += "elemSize:" + mat1.elemSize() + "[byte]" + "\n"; executionResultText.text += "elemSize1 (elemSize/channels):" + mat1.elemSize1() + "[byte]" + "\n"; executionResultText.text += "total:" + mat1.total() + "\n"; executionResultText.text += "step (step1*elemSize1):" + mat1.step1() * mat1.elemSize1() + "[byte]" + "\n"; executionResultText.text += "step1 (step/elemSize1):" + mat1.step1() + "\n"; executionResultText.text += "isContinuous:" + mat1.isContinuous() + "\n"; executionResultText.text += "isSubmatrix:" + mat1.isSubmatrix() + "\n"; executionResultText.text += "empty:" + mat1.empty() + "\n"; executionResultText.text += "==============================" + "\n"; executionResultText.text += "rows:" + r1.rows() + "\n"; executionResultText.text += "cols:" + r1.cols() + "\n"; executionResultText.text += "dims:" + r1.dims() + "\n"; executionResultText.text += "size[]:" + r1.size().width + ", " + r1.size().height + "\n"; executionResultText.text += "depth (ID):" + r1.depth() + "(=" + CvType.CV_32F + ")" + "\n"; executionResultText.text += "channels:" + r1.channels() + "\n"; executionResultText.text += "elemSize:" + r1.elemSize() + "[byte]" + "\n"; executionResultText.text += "elemSize1 (elemSize/channels):" + r1.elemSize1() + "[byte]" + "\n"; executionResultText.text += "total:" + r1.total() + "\n"; executionResultText.text += "step (step1*elemSize1):" + r1.step1() * r1.elemSize1() + "[byte]" + "\n"; executionResultText.text += "step1 (step/elemSize1):" + r1.step1() + "\n"; executionResultText.text += "isContinuous:" + r1.isContinuous() + "\n"; executionResultText.text += "isSubmatrix:" + r1.isSubmatrix() + "\n"; executionResultText.text += "empty:" + r1.empty() + "\n"; executionResultText.text += "==============================" + "\n"; executionResultText.text += "rows:" + mat3.rows() + "\n"; executionResultText.text += "cols:" + mat3.cols() + "\n"; executionResultText.text += "dims:" + mat3.dims() + "\n"; executionResultText.text += "size[]:" + size + "\n"; executionResultText.text += "depth (ID):" + mat3.depth() + "(=" + CvType.CV_32S + ")" + "\n"; executionResultText.text += "channels:" + mat3.channels() + "\n"; executionResultText.text += "elemSize:" + mat3.elemSize() + "[byte]" + "\n"; executionResultText.text += "elemSize1 (elemSize/channels):" + mat3.elemSize1() + "[byte]" + "\n"; executionResultText.text += "total:" + mat3.total() + "\n"; executionResultText.text += "step (step1*elemSize1):" + step + "[byte]" + "\n"; executionResultText.text += "step1 (step/elemSize1):" + mat3.step1() + "\n"; executionResultText.text += "isContinuous:" + mat3.isContinuous() + "\n"; executionResultText.text += "isSubmatrix:" + mat3.isSubmatrix() + "\n"; executionResultText.text += "empty:" + mat3.empty() + "\n"; UpdateScrollRect(); } public void OnFourArithmeticOperationExampleButtonClick() { // // four arithmetic operation example // // 64F, channels=1, 3x3 Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); Debug.Log("m1=" + m1.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; // matrix and scalar Mat m2 = m1 + new Scalar(3); Mat m3 = m1 - new Scalar(3); Mat m4 = m1 * 3; //scaling Mat m5 = m1 / 3; Debug.Log("m1+3=" + m2.dump()); Debug.Log("m1-3=" + m3.dump()); Debug.Log("m1*3=" + m4.dump()); Debug.Log("m1/3=" + m5.dump()); executionResultText.text += "m1+3=" + m2.dump() + "\n"; executionResultText.text += "m1-3=" + m3.dump() + "\n"; executionResultText.text += "m1*3=" + m4.dump() + "\n"; executionResultText.text += "m1/3=" + m5.dump() + "\n"; // matrix and matrix Mat m6 = m1 + m1; Mat m7 = m1.mul(m2); Mat m8 = m1.mul(m2, 2); //add scaling factor Debug.Log("m1+m1=" + m6.dump()); Debug.Log("m1.mul(m2)=" + m7.dump()); Debug.Log("m1.mul(m2, 2)=" + m8.dump()); executionResultText.text += "m1+m1=" + m6.dump() + "\n"; executionResultText.text += "m1.mul(m2)=" + m7.dump() + "\n"; executionResultText.text += "m1.mul(m2, 2)=" + m8.dump() + "\n"; // CVException handling // 8U, channels=1, 3x3 Mat m9 = new Mat(3, 3, CvType.CV_8UC1); m9.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // 64F, channels=1, 3x3 Mat m10 = new Mat(2, 2, CvType.CV_64FC1); m10.put(0, 0, 1.0, 2.0, 3.0, 4.0); // Publish CVException to Debug.LogError. Utils.setDebugMode(true, false); Mat m11 = m1 / m9; // element type is different. Debug.Log("m1/m9=" + m11); executionResultText.text += "m1/m9=" + m11 + "\n"; Mat m12 = m1 / m10; // matrix size is different. Debug.Log("m1/m10=" + m12); executionResultText.text += "m1/m10=" + m12 + "\n"; Utils.setDebugMode(false); exampleCodeText.text = @" // // four arithmetic operation example // // 64F, channels=1, 3x3 Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0); Debug.Log (""m1="" + m1.dump ()); executionResultText.text = ""m1="" + m1.dump () + ""\n""; // matrix and scalar Mat m2 = m1 + new Scalar (3); Mat m3 = m1 - new Scalar (3); Mat m4 = m1 * 3; //scaling Mat m5 = m1 / 3; Debug.Log (""m1+3="" + m2.dump ()); Debug.Log (""m1-3="" + m3.dump ()); Debug.Log (""m1*3="" + m4.dump ()); Debug.Log (""m1/3="" + m5.dump ()); executionResultText.text += ""m1+3="" + m2.dump () + ""\n""; executionResultText.text += ""m1-3="" + m3.dump () + ""\n""; executionResultText.text += ""m1*3="" + m4.dump () + ""\n""; executionResultText.text += ""m1/3="" + m5.dump () + ""\n""; // matrix and matrix Mat m6 = m1 + m1; Mat m7 = m1.mul (m2); Mat m8 = m1.mul (m2, 2); //add scaling factor Debug.Log (""m1+m1="" + m6.dump ()); Debug.Log (""m1.mul(m2)="" + m7.dump ()); Debug.Log (""m1.mul(m2, 2)="" + m8.dump ()); executionResultText.text += ""m1+m1="" + m6.dump () + ""\n""; executionResultText.text += ""m1.mul(m2)="" + m7.dump () + ""\n""; executionResultText.text += ""m1.mul(m2, 2)="" + m8.dump () + ""\n""; // CVException handling // 8U, channels=1, 3x3 Mat m9 = new Mat (3, 3, CvType.CV_8UC1); m9.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // 64F, channels=1, 3x3 Mat m10 = new Mat (2, 2, CvType.CV_64FC1); m10.put (0, 0, 1.0, 2.0, 3.0, 4.0); // Publish CVException to Debug.LogError. Utils.setDebugMode (true, false); Mat m11 = m1 / m9; // element type is different. Debug.Log (""m1/m9="" + m11); executionResultText.text += ""m1/m9="" + m11 + ""\n""; Mat m12 = m1 / m10; // matrix size is different. Debug.Log (""m1/m10="" + m12); executionResultText.text += ""m1/m10="" + m12 + ""\n""; Utils.setDebugMode (false); "; UpdateScrollRect(); } public void OnConvertToExampleButtonClick() { // // convertTo example // // 64F, channels=1, 3x3 Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3); Debug.Log("m1=" + m1.dump()); // dst mat, type Mat m2 = new Mat(); m1.convertTo(m2, CvType.CV_8U); Debug.Log("m2=" + m2.dump()); // dst mat, type, scale factor, added to the scaled value Mat m3 = new Mat(); m1.convertTo(m3, CvType.CV_8U, 2, 10); Debug.Log("m3=" + m3.dump()); exampleCodeText.text = @" // // convertTo example // // 64F, channels=1, 3x3 Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 3.3); Debug.Log (""m1="" + m1.dump()); // dst mat, type Mat m2 = new Mat (); m1.convertTo (m2, CvType.CV_8U); Debug.Log (""m2="" + m2.dump()); // dst mat, type, scale factor, added to the scaled value Mat m3 = new Mat (); m1.convertTo (m3, CvType.CV_8U, 2, 10); Debug.Log (""m3="" + m3.dump()); "; executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "m2=" + m2.dump() + "\n"; executionResultText.text += "m3=" + m3.dump() + "\n"; UpdateScrollRect(); } public void OnReshapeExampleButtonClick() { // // reshape example // // 64F, channels=1, 3x4 Mat m1 = new Mat(3, 4, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); Debug.Log("m1=" + m1.dump()); Debug.Log("ch=" + m1.channels()); // channels=1, 3x4 -> channels=2, 3x2 Mat m2 = m1.reshape(2); Debug.Log("m2=" + m2.dump()); Debug.Log("ch=" + m2.channels()); // channels=1, 3x4 -> channels=1, 2x6 Mat m3 = m1.reshape(1, 2); Debug.Log("m3=" + m3.dump()); Debug.Log("ch=" + m3.channels()); // 2D -> 4D Mat src = new Mat(6, 5, CvType.CV_8UC3, new Scalar(0)); Mat m4 = src.reshape(1, new int[] { 1, src.channels() * src.cols(), 1, src.rows() }); Debug.Log("m4.dims=" + m4.dims()); string size = ""; for (int i = 0; i < m4.dims(); ++i) { size += m4.size(i) + ", "; } Debug.Log("size[]=" + size); Debug.Log("ch=" + m4.channels()); // 3D -> 2D src = new Mat(new int[] { 4, 6, 7 }, CvType.CV_8UC3, new Scalar(0)); Mat m5 = src.reshape(1, new int[] { src.channels() * src.size(2), src.size(0) * src.size(1) }); Debug.Log("m5=" + m5); Debug.Log("ch=" + m5.channels()); exampleCodeText.text = @" // // reshape example // // 64F, channels=1, 3x4 Mat m1 = new Mat (3, 4, CvType.CV_64FC1); m1.put (0, 0, 1,2,3,4,5,6,7,8,9,10,11,12); Debug.Log (""m1="" + m1.dump()); Debug.Log (""ch="" + m1.channels()); // channels=1, 3x4 -> channels=2, 3x2 Mat m2 = m1.reshape (2); Debug.Log (""m2="" + m2.dump ()); Debug.Log (""ch="" + m2.channels ()); // channels=1, 3x4 -> channels=1, 2x6 Mat m3 = m1.reshape (1, 2); Debug.Log (""m3="" + m3.dump ()); Debug.Log (""ch="" + m3.channels ()); // 2D -> 4D Mat src = new Mat (6, 5, CvType.CV_8UC3, new Scalar (0)); Mat m4 = src.reshape (1, new int[]{ 1, src.channels () * src.cols (), 1, src.rows () }); Debug.Log (""m4.dims="" + m4.dims ()); string size = """"; for (int i = 0; i < m4.dims (); ++i) { size += m4.size (i) + "", ""; } Debug.Log (""size[]="" + size); Debug.Log (""ch="" + m4.channels ()); // 3D -> 2D src = new Mat (new int[]{ 4, 6, 7 }, CvType.CV_8UC3, new Scalar (0)); Mat m5 = src.reshape (1, new int[]{ src.channels () * src.size (2), src.size (0) * src.size (1) }); Debug.Log (""m5="" + m5); Debug.Log (""ch="" + m5.channels ()); "; executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "ch=" + m1.channels() + "\n"; executionResultText.text += "m2=" + m2.dump() + "\n"; executionResultText.text += "ch=" + m2.channels() + "\n"; executionResultText.text += "m3=" + m3.dump() + "\n"; executionResultText.text += "ch=" + m3.channels() + "\n"; executionResultText.text += "m4.dims=" + m4.dims() + "\n"; executionResultText.text += "m4.size[]=" + size + "\n"; executionResultText.text += "ch=" + m4.channels() + "\n"; executionResultText.text += "m5=" + m5 + "\n"; executionResultText.text += "ch=" + m5.channels() + "\n"; UpdateScrollRect(); } public void OnRangeExampleButtonClick() { // // range example // // 64F, channels=1, 3x3 Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log("m1=" + m1.dump()); // all rows Debug.Log("m1.rowRange(Range.all())=" + m1.rowRange(Range.all()).dump()); // rowRange(0,2) Debug.Log("m1.rowRange(new Range(0,2))=" + m1.rowRange(new Range(0, 2)).dump()); // row(0) Debug.Log("m1.row(0)=" + m1.row(0).dump()); // all cols Debug.Log("m1.colRange(Range.all())=" + m1.colRange(Range.all()).dump()); // colRange(0,2) Debug.Log("m1.colRange(new Range(0,2))=" + m1.colRange(new Range(0, 2)).dump()); // col(0) Debug.Log("m1.col(0)=" + m1.col(0).dump()); exampleCodeText.text = @" // // range example // // 64F, channels=1, 3x3 Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log (""m1="" + m1.dump()); // all rows Debug.Log (""m1.rowRange(Range.all())="" + m1.rowRange(Range.all()).dump()); // rowRange(0,2) Debug.Log (""m1.rowRange(new Range(0,2))="" + m1.rowRange(new Range(0,2)).dump()); // row(0) Debug.Log (""m1.row(0)="" + m1.row(0).dump()); // all cols Debug.Log (""m1.colRange(Range.all())="" + m1.colRange(Range.all()).dump()); // colRange(0,2) Debug.Log (""m1.colRange(new Range(0,2))="" + m1.colRange(new Range(0,2)).dump()); // col(0) Debug.Log (""m1.col(0)="" + m1.col(0).dump()); "; executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "m1.rowRange(Range.all())=" + m1.rowRange(Range.all()).dump() + "\n"; executionResultText.text += "m1.rowRange(new Range(0,2))=" + m1.rowRange(new Range(0, 2)).dump() + "\n"; executionResultText.text += "m1.row(0)=" + m1.row(0).dump() + "\n"; executionResultText.text += "m1.colRange(Range.all())=" + m1.colRange(Range.all()).dump() + "\n"; executionResultText.text += "m1.colRange(new Range(0,2))=" + m1.colRange(new Range(0, 2)).dump() + "\n"; executionResultText.text += "m1.col(0)=" + m1.col(0).dump() + "\n"; UpdateScrollRect(); } public void OnShallowCopyAndDeepCopyExampleButtonClick() { // // shallow copy and deep copy example // // 3x3 matrix Mat mat1 = new Mat(3, 3, CvType.CV_64FC1); mat1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // shallow copy Mat m_shallow = mat1; // deep copy (clone, copyTo) Mat m_deep1 = mat1.clone(); Mat m_deep2 = new Mat(); mat1.copyTo(m_deep2); Debug.Log("mat1=" + mat1.dump()); Debug.Log("m_shallow=" + m_shallow.dump()); Debug.Log("m_deep1=" + m_deep1.dump()); Debug.Log("m_deep2=" + m_deep2.dump()); executionResultText.text = "mat1=" + mat1.dump() + "\n"; executionResultText.text += "m_shallow=" + m_shallow.dump() + "\n"; executionResultText.text += "m_deep1=" + m_deep1.dump() + "\n"; executionResultText.text += "m_deep2=" + m_deep2.dump() + "\n"; // rewrite (0, 0) element of matrix mat1 mat1.put(0, 0, 100); Debug.Log("mat1=" + mat1.dump()); Debug.Log("m_shallow=" + m_shallow.dump()); Debug.Log("m_deep1=" + m_deep1.dump()); Debug.Log("m_deep2=" + m_deep2.dump()); executionResultText.text += "mat1=" + mat1.dump() + "\n"; executionResultText.text += "m_shallow=" + m_shallow.dump() + "\n"; executionResultText.text += "m_deep1=" + m_deep1.dump() + "\n"; executionResultText.text += "m_deep2=" + m_deep2.dump() + "\n"; Debug.Log("mat1.Equals(m_shallow)=" + mat1.Equals(m_shallow)); Debug.Log("mat1.Equals(m_deep1)=" + mat1.Equals(m_deep1)); Debug.Log("mat1.Equals(m_deep2)=" + mat1.Equals(m_deep2)); executionResultText.text += "mat1.Equals(m_shallow)=" + mat1.Equals(m_shallow) + "\n"; executionResultText.text += "mat1.Equals(m_deep1)=" + mat1.Equals(m_deep1) + "\n"; executionResultText.text += "mat1.Equals(m_deep2)=" + mat1.Equals(m_deep2) + "\n"; exampleCodeText.text = @" // // shallow copy and deep copy example // // 3x3 matrix Mat mat1 = new Mat (3, 3, CvType.CV_64FC1); mat1.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); // shallow copy Mat m_shallow = mat1; // deep copy (clone, copyTo) Mat m_deep1 = mat1.clone(); Mat m_deep2 = new Mat(); mat1.copyTo (m_deep2); Debug.Log (""mat1="" + mat1.dump()); Debug.Log (""m_shallow="" + m_shallow.dump()); Debug.Log (""m_deep1="" + m_deep1.dump()); Debug.Log (""m_deep2="" + m_deep2.dump()); // rewrite (0, 0) element of matrix mat1 mat1.put(0, 0, 100); Debug.Log (""mat1="" + mat1.dump()); Debug.Log (""m_shallow="" + m_shallow.dump()); Debug.Log (""m_deep1="" + m_deep1.dump()); Debug.Log (""m_deep2="" + m_deep2.dump()); Debug.Log (""mat1.Equals(m_shallow)="" + mat1.Equals(m_shallow)); Debug.Log (""mat1.Equals(m_deep1)="" + mat1.Equals(m_deep1)); Debug.Log (""mat1.Equals(m_deep2)="" + mat1.Equals(m_deep2)); "; UpdateScrollRect(); } public void OnMergeExampleButtonClick() { // // simple composition: Merge example // // 2x2 matrix Mat m1 = new Mat(2, 2, CvType.CV_64FC1); m1.put(0, 0, 1.0, 2.0, 3.0, 4.0); Mat m2 = new Mat(2, 2, CvType.CV_64FC1); m2.put(0, 0, 1.1, 2.1, 3.1, 4.1); Mat m3 = new Mat(2, 2, CvType.CV_64FC1); m3.put(0, 0, 1.2, 2.2, 3.2, 4.2); List mv = new List(); mv.Add(m1); mv.Add(m2); mv.Add(m3); // merge Mat m_merged = new Mat(); Core.merge(mv, m_merged); // dump Debug.Log("m_merged=" + m_merged.dump()); exampleCodeText.text = @" // // simple composition: Merge example // // 2x2 matrix Mat m1 = new Mat (2, 2, CvType.CV_64FC1); m1.put (0, 0, 1.0, 2.0, 3.0, 4.0); Mat m2 = new Mat (2, 2, CvType.CV_64FC1); m2.put (0, 0, 1.1, 2.1, 3.1, 4.1); Mat m3 = new Mat (2, 2, CvType.CV_64FC1); m3.put (0, 0, 1.2, 2.2, 3.2, 4.2); List mv = new List(); mv.Add (m1); mv.Add (m2); mv.Add (m3); // merge Mat m_merged = new Mat(); Core.merge (mv, m_merged); // dump Debug.Log (""m_merged="" + m_merged.dump()); "; executionResultText.text = "m_merged=" + m_merged.dump() + "\n"; UpdateScrollRect(); } public void OnMixChannelsExampleButtonClick() { // // complex composition: mixChannels example // // 2x2 matrix Mat m1 = new Mat(2, 2, CvType.CV_64FC1); m1.put(0, 0, 1.0, 2.0, 3.0, 4.0); Mat m2 = new Mat(2, 2, CvType.CV_64FC1); m2.put(0, 0, 1.1, 2.1, 3.1, 4.1); Mat m3 = new Mat(2, 2, CvType.CV_64FC1); m3.put(0, 0, 1.2, 2.2, 3.2, 4.2); List mv = new List(); mv.Add(m1); mv.Add(m2); mv.Add(m3); // mat for output must be allocated. Mat m_mixed1 = new Mat(2, 2, CvType.CV_64FC2); Mat m_mixed2 = new Mat(2, 2, CvType.CV_64FC2); MatOfInt fromTo = new MatOfInt(0, 0, 1, 1, 1, 3, 2, 2); List mixv = new List(); mixv.Add(m_mixed1); mixv.Add(m_mixed2); // mix Core.mixChannels(mv, mixv, fromTo); // dump Debug.Log("m_mixed1=" + m_mixed1.dump()); Debug.Log("m_mixed2=" + m_mixed2.dump()); exampleCodeText.text = @" // // complex composition: mixChannels example // // 2x2 matrix Mat m1 = new Mat (2, 2, CvType.CV_64FC1); m1.put (0, 0, 1.0, 2.0, 3.0, 4.0); Mat m2 = new Mat (2, 2, CvType.CV_64FC1); m2.put (0, 0, 1.1, 2.1, 3.1, 4.1); Mat m3 = new Mat (2, 2, CvType.CV_64FC1); m3.put (0, 0, 1.2, 2.2, 3.2, 4.2); List mv = new List(); mv.Add (m1); mv.Add (m2); mv.Add (m3); // mat for output must be allocated. Mat m_mixed1 = new Mat(2, 2, CvType.CV_64FC2); Mat m_mixed2 = new Mat(2, 2, CvType.CV_64FC2); MatOfInt fromTo = new MatOfInt (0,0, 1,1, 1,3, 2,2); List mixv = new List (); mixv.Add (m_mixed1); mixv.Add (m_mixed2); // mix Core.mixChannels (mv, mixv, fromTo); // dump Debug.Log (""m_mixed1="" + m_mixed1.dump()); Debug.Log (""m_mixed2="" + m_mixed2.dump()); "; executionResultText.text = "m_mixed1=" + m_mixed1.dump() + "\n"; executionResultText.text += "m_mixed2=" + m_mixed2.dump() + "\n"; UpdateScrollRect(); } public void OnSplitExampleButtonClick() { // // split example // // channels=3, 2x3 matrix Mat m1 = new Mat(2, 3, CvType.CV_64FC3); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18); List planes = new List(); // split Core.split(m1, planes); // dump foreach (Mat item in planes) { Debug.Log(item.dump()); } exampleCodeText.text = @" // // split example // // channels=3, 2x3 matrix Mat m1 = new Mat (2, 3, CvType.CV_64FC3); m1.put (0, 0, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18); List planes = new List(); // split Core.split (m1, planes); // dump foreach (Mat item in planes) { Debug.Log (item.dump()); } "; executionResultText.text = ""; foreach (Mat item in planes) { executionResultText.text += item.dump() + "\n"; } UpdateScrollRect(); } public void OnReduceExampleButtonClick() { // // reduce example // // 3x3 matrix Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1, 5, 3, 4, 2, 6, 7, 8, 9); Mat v1 = new Mat(); Mat v2 = new Mat(); Mat v3 = new Mat(); Mat v4 = new Mat(); // reduce 3 x 3 matrix to one row Core.reduce(m1, v1, 0, Core.REDUCE_SUM); // total value of each column Core.reduce(m1, v2, 0, Core.REDUCE_AVG); // total average value of each column Core.reduce(m1, v3, 0, Core.REDUCE_MIN); // minimum value of each column Core.reduce(m1, v4, 0, Core.REDUCE_MAX); // maximum value of each column // dump Debug.Log("m1=" + m1.dump()); Debug.Log("v1(sum)=" + v1.dump()); Debug.Log("v2(avg)=" + v2.dump()); Debug.Log("v3(min)=" + v3.dump()); Debug.Log("v4(max)=" + v4.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "v1(sum)=" + v1.dump() + "\n"; executionResultText.text += "v2(avg)=" + v2.dump() + "\n"; executionResultText.text += "v3(min)=" + v3.dump() + "\n"; executionResultText.text += "v4(max)=" + v4.dump() + "\n"; // reduce 3 x 3 matrix to one col Core.reduce(m1, v1, 1, Core.REDUCE_SUM); // total value of each row Core.reduce(m1, v2, 1, Core.REDUCE_AVG); // total average value of row Core.reduce(m1, v3, 1, Core.REDUCE_MIN); // minimum value of each row Core.reduce(m1, v4, 1, Core.REDUCE_MAX); // maximum value of each row // dump Debug.Log("m1=" + m1.dump()); Debug.Log("v1(sum)=" + v1.dump()); Debug.Log("v2(avg)=" + v2.dump()); Debug.Log("v3(min)=" + v3.dump()); Debug.Log("v4(max)=" + v4.dump()); executionResultText.text += "m1=" + m1.dump() + "\n"; executionResultText.text += "v1(sum)=" + v1.dump() + "\n"; executionResultText.text += "v2(avg)=" + v2.dump() + "\n"; executionResultText.text += "v3(min)=" + v3.dump() + "\n"; executionResultText.text += "v4(max)=" + v4.dump() + "\n"; exampleCodeText.text = @" // // reduce example // // 3x3 matrix Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1, 5, 3, 4, 2, 6, 7, 8, 9); Mat v1 = new Mat (); Mat v2 = new Mat (); Mat v3 = new Mat (); Mat v4 = new Mat (); // reduce 3 x 3 matrix to one row Core.reduce (m1, v1, 0, Core.REDUCE_SUM); // total value of each column Core.reduce (m1, v2, 0, Core.REDUCE_AVG); // total average value of each column Core.reduce (m1, v3, 0, Core.REDUCE_MIN); // minimum value of each column Core.reduce (m1, v4, 0, Core.REDUCE_MAX); // maximum value of each column // dump Debug.Log (""m1="" + m1.dump()); Debug.Log (""v1(sum)="" + v1.dump()); Debug.Log (""v2(avg)="" + v2.dump()); Debug.Log (""v3(min)="" + v3.dump()); Debug.Log (""v4(max)="" + v4.dump()); // reduce 3 x 3 matrix to one col Core.reduce (m1, v1, 1, Core.REDUCE_SUM); // total value of each row Core.reduce (m1, v2, 1, Core.REDUCE_AVG); // total average value of row Core.reduce (m1, v3, 1, Core.REDUCE_MIN); // minimum value of each row Core.reduce (m1, v4, 1, Core.REDUCE_MAX); // maximum value of each row // dump Debug.Log (""m1="" + m1.dump()); Debug.Log (""v1(sum)="" + v1.dump()); Debug.Log (""v2(avg)="" + v2.dump()); Debug.Log (""v3(min)="" + v3.dump()); Debug.Log (""v4(max)="" + v4.dump()); "; UpdateScrollRect(); } public void OnSubmatrixExampleButtonClick() { // // submatrix (ROI) example // // 3x3 matrix Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log("m1=" + m1.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; // get submatrix (ROI) of range (row[0_2] col[0_2]) Mat m2 = new Mat(m1, new OpenCVForUnity.CoreModule.Rect(0, 0, 2, 2)); Debug.Log("m2=" + m2.dump()); executionResultText.text += "m2=" + m2.dump() + "\n"; Debug.Log("m2.submat()=" + m2.submat(0, 2, 0, 2).dump()); executionResultText.text += "m2.submat()=" + m2.submat(0, 2, 0, 2).dump() + "\n"; // find the parent matrix size of the submatrix (ROI) m2 and its position in it Size wholeSize = new Size(); Point ofs = new Point(); m2.locateROI(wholeSize, ofs); Debug.Log("wholeSize:" + wholeSize.width + "x" + wholeSize.height); Debug.Log("offset:" + ofs.x + ", " + ofs.y); executionResultText.text += "wholeSize:" + wholeSize.width + "x" + wholeSize.height + "\n"; executionResultText.text += "offset:" + ofs.x + ", " + ofs.y + "\n"; // expand the range of submatrix (ROI) m2.adjustROI(0, 1, 0, 1); Debug.Log("rows=" + m2.rows() + ", " + "cols=" + m2.cols()); Debug.Log("m2=" + m2.dump()); executionResultText.text += "rows=" + m2.rows() + ", " + "cols=" + m2.cols() + "\n"; executionResultText.text += "m2=" + m2.dump() + "\n"; exampleCodeText.text = @" // // submatrix (ROI) example // // 3x3 matrix Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Debug.Log (""m1="" + m1.dump ()); // get submatrix (ROI) of range (row[0_2] col[0_2]) Mat m2 = new Mat (m1, new OpenCVForUnity.CoreModule.Rect(0,0,2,2)); Debug.Log (""m2="" + m2.dump()); Debug.Log (""m2.submat()="" + m2.submat(0,2,0,2).dump()); // find the parent matrix size of the submatrix (ROI) m2 and its position in it Size wholeSize = new Size (); Point ofs = new Point (); m2.locateROI (wholeSize, ofs); Debug.Log (""wholeSize:"" + wholeSize.width + ""x"" + wholeSize.height); Debug.Log (""offset:"" + ofs.x + "", "" + ofs.y); // expand the range of submatrix (ROI) m2.adjustROI(0, 1, 0, 1); Debug.Log (""rows="" + m2.rows() + "", "" + ""cols="" + m2.cols()); Debug.Log (""m2="" + m2.dump()); "; UpdateScrollRect(); } public void OnRandShuffleExampleButtonClick() { // // randShuffle example // // 4x5 matrix Mat m1 = new Mat(4, 5, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20); Debug.Log("m1(original)=" + m1.dump()); executionResultText.text = "m1(original)=" + m1.dump() + "\n"; // shuffle Core.randShuffle(m1, UnityEngine.Random.value); Debug.Log("m1(shuffle)=" + m1.dump()); executionResultText.text += "m1(shuffle)=" + m1.dump() + "\n"; // submatrix Mat m2 = new Mat(m1, new OpenCVForUnity.CoreModule.Rect(1, 1, 3, 2)); Debug.Log("m2(sub-matrix)=" + m2.dump()); executionResultText.text += "m2(sub-matrix)=" + m2.dump() + "\n"; Core.randShuffle(m2, UnityEngine.Random.value); Debug.Log("m2(sub-matrix)=" + m2.dump()); Debug.Log("m1=" + m1.dump()); executionResultText.text += "m2(shuffle sub-matrix)=" + m2.dump() + "\n"; executionResultText.text += "m1=" + m1.dump() + "\n"; exampleCodeText.text = @" // // randShuffle example // // 4x5 matrix Mat m1 = new Mat (4, 5, CvType.CV_64FC1); m1.put (0, 0, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20); Debug.Log (""m1(original)="" + m1.dump ()); // shuffle Core.randShuffle (m1, UnityEngine.Random.value); Debug.Log (""m1(shuffle)="" + m1.dump ()); // submatrix Mat m2 = new Mat (m1, new OpenCVForUnity.CoreModule.Rect(1,1,3,2)); Debug.Log (""m2(sub-matrix)="" + m2.dump()); Core.randShuffle (m2, UnityEngine.Random.value); Debug.Log (""m2(sub-matrix)="" + m2.dump()); Debug.Log (""m1="" + m1.dump ()); "; UpdateScrollRect(); } public void OnSortExampleButtonClick() { // // sort example // // 5x5 matrix Mat m1 = new Mat(5, 5, CvType.CV_8UC1); Core.randu(m1, 0, 25); Debug.Log("m1=" + m1.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; Mat dst_mat = new Mat(); // sort ascending Core.sort(m1, dst_mat, Core.SORT_EVERY_ROW | Core.SORT_ASCENDING); Debug.Log("ROW|ASCENDING:" + dst_mat.dump()); executionResultText.text += "ROW|ASCENDING:" + dst_mat.dump() + "\n"; // sort descending Core.sort(m1, dst_mat, Core.SORT_EVERY_ROW | Core.SORT_DESCENDING); Debug.Log("ROW|DESCENDING:" + dst_mat.dump()); executionResultText.text += "ROW|DESCENDING:" + dst_mat.dump() + "\n"; // sort ascending Core.sort(m1, dst_mat, Core.SORT_EVERY_COLUMN | Core.SORT_ASCENDING); Debug.Log("COLUMN|ASCENDING:" + dst_mat.dump()); executionResultText.text += "COLUMN|ASCENDING:" + dst_mat.dump() + "\n"; // sort descending Core.sort(m1, dst_mat, Core.SORT_EVERY_COLUMN | Core.SORT_DESCENDING); Debug.Log("COLUMN|DESCENDING:" + dst_mat.dump()); executionResultText.text += "COLUMN|DESCENDING:" + dst_mat.dump() + "\n"; exampleCodeText.text = @" // // sort example // // 5x5 matrix Mat m1 = new Mat (5, 5, CvType.CV_8UC1); Core.randu (m1, 0, 25); Debug.Log (""m1="" + m1.dump ()); executionResultText.text = ""m1="" + m1.dump() + ""\n""; Mat dst_mat = new Mat (); // sort ascending Core.sort (m1, dst_mat, Core.SORT_EVERY_ROW|Core.SORT_ASCENDING); Debug.Log (""ROW|ASCENDING:"" + dst_mat.dump ()); // sort descending Core.sort (m1, dst_mat, Core.SORT_EVERY_ROW|Core.SORT_DESCENDING); Debug.Log (""ROW|DESCENDING:"" + dst_mat.dump ()); // sort ascending Core.sort (m1, dst_mat, Core.SORT_EVERY_COLUMN|Core.SORT_ASCENDING); Debug.Log (""COLUMN|ASCENDING:"" + dst_mat.dump ()); // sort descending Core.sort (m1, dst_mat, Core.SORT_EVERY_COLUMN|Core.SORT_DESCENDING); Debug.Log (""COLUMN|DESCENDING:"" + dst_mat.dump ()); "; UpdateScrollRect(); } public void OnComparisonExampleButtonClick() { // // comparison example // // 3x3 matrix Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Mat m2 = new Mat(3, 3, CvType.CV_64FC1); m2.put(0, 0, 9, 8, 7, 6, 5, 4, 3, 2, 1); Debug.Log("m1=" + m1.dump()); Debug.Log("m2=" + m2.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "m2=" + m2.dump() + "\n"; Mat dst_mat = new Mat(); // GT (M1 > M2) Core.compare(m1, m2, dst_mat, Core.CMP_GT); Debug.Log("GT (M1 > M2)=" + dst_mat.dump()); executionResultText.text += "GT (M1 > M2)=" + dst_mat.dump() + "\n"; // GE (M1 >= M2) Core.compare(m1, m2, dst_mat, Core.CMP_GE); Debug.Log("GE (M1 >= M2)=" + dst_mat.dump()); executionResultText.text += "GE (M1 >= M2)=" + dst_mat.dump() + "\n"; // EQ (M1 == M2) Core.compare(m1, m2, dst_mat, Core.CMP_EQ); Debug.Log("EQ (M1 == M2)=" + dst_mat.dump()); executionResultText.text += "EQ (M1 == M2)=" + dst_mat.dump() + "\n"; // NE (M1 != M2) Core.compare(m1, m2, dst_mat, Core.CMP_NE); Debug.Log("NE (M1 != M2)=" + dst_mat.dump()); executionResultText.text += "NE (M1 != M2)=" + dst_mat.dump() + "\n"; // LE (M1 <= M2) Core.compare(m1, m2, dst_mat, Core.CMP_LE); Debug.Log("LE (M1 <= M2)=" + dst_mat.dump()); executionResultText.text += "LE (M1 <= M2)=" + dst_mat.dump() + "\n"; // LT (M1 < M2) Core.compare(m1, m2, dst_mat, Core.CMP_LT); Debug.Log("LT (M1 < M2)=" + dst_mat.dump()); executionResultText.text += "LT (M1 < M2)=" + dst_mat.dump() + "\n"; exampleCodeText.text = @" // // comparison example // // 3x3 matrix Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1,2,3,4,5,6,7,8,9); Mat m2 = new Mat (3, 3, CvType.CV_64FC1); m2.put (0, 0, 10,11,12,13,14,15,16,17,18); Debug.Log (""m1="" + m1.dump ()); Debug.Log (""m2="" + m2.dump ()); Mat dst_mat = new Mat (); // GT (M1 > M2) Core.compare (m1, m2, dst_mat, Core.CMP_GT); Debug.Log (""GT (M1 > M2)="" + dst_mat.dump ()); // GE (M1 >= M2) Core.compare (m1, m2, dst_mat, Core.CMP_GE); Debug.Log (""GE (M1 >= M2)="" + dst_mat.dump ()); // EQ (M1 == M2) Core.compare (m1, m2, dst_mat, Core.CMP_EQ); Debug.Log (""EQ (M1 == M2)="" + dst_mat.dump ()); // NE (M1 != M2) Core.compare (m1, m2, dst_mat, Core.CMP_NE); Debug.Log (""NE (M1 != M2)="" + dst_mat.dump ()); // LE (M1 <= M2) Core.compare (m1, m2, dst_mat, Core.CMP_LE); Debug.Log (""LE (M1 <= M2)="" + dst_mat.dump ()); // LT (M1 < M2) Core.compare (m1, m2, dst_mat, Core.CMP_LT); Debug.Log (""LT (M1 < M2)="" + dst_mat.dump ()); "; UpdateScrollRect(); } public void OnOperatorsExampleButtonClick() { // // operators example // // 3x3 matrix Mat m1 = new Mat(3, 3, CvType.CV_64FC1); m1.put(0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9); Mat m2 = new Mat(3, 3, CvType.CV_64FC1); m2.put(0, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18); Scalar s = new Scalar(5); double alpha = 3; Debug.Log("m1=" + m1.dump()); Debug.Log("m2=" + m2.dump()); Debug.Log("s=" + s); Debug.Log("alpha=" + alpha); executionResultText.text = "m1=" + m1.dump() + "\n"; executionResultText.text += "m2=" + m2.dump() + "\n"; executionResultText.text += "s=" + s + "\n"; executionResultText.text += "alpha=" + alpha + "\n"; // Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A // (M1 + M2 = Core.add (M1, M2, M_dst)) Debug.Log("m1+m2=" + (m1 + m2).dump()); executionResultText.text += "m1+m2=" + (m1 + m2).dump() + "\n"; // (M1 + s = Core.add (M1, s, M_dst)) Debug.Log("m1+s=" + (m1 + s).dump()); executionResultText.text += "m1+s=" + (m1 + s).dump() + "\n"; // (M1 - M2 = Core.subtract (M1, M2, M_dst)) Debug.Log("m1-m2=" + (m1 - m2).dump()); executionResultText.text += "m1-m2=" + (m1 - m2).dump() + "\n"; // (M1 - s = Core.subtract (M1, s, M_dst)) Debug.Log("m1-s=" + (m1 - s).dump()); executionResultText.text += "m1-s=" + (m1 - s).dump() + "\n"; // (-M1 = Core.multiply (M1, Scalar.all (-1), M_dst)) Debug.Log("-m1=" + (-m1).dump()); executionResultText.text += "-m1=" + (-m1).dump() + "\n"; // Scaling: A*alpha A/alpha // (M1 * 3 = Core.multiply (M1, Scalar.all (3), M_dst)) Debug.Log("m1*alpha=" + (m1 * alpha).dump()); executionResultText.text += "m1*alpha=" + (m1 * alpha).dump() + "\n"; // (M1 / 3 = Core.divide (M1, Scalar.all (3), M_dst)) Debug.Log("m1/alpha=" + (m1 / alpha).dump()); executionResultText.text += "m1/alpha=" + (m1 / alpha).dump() + "\n"; // Per-element multiplication and division: A.mul(B), A/B, alpha/A // (M1.mul(M2) = M1.mul (M2)) Debug.Log("m1.mul(m2)=" + (m1.mul(m2)).dump()); executionResultText.text += "m1.mul(m2)=" + (m1.mul(m2)).dump() + "\n"; // (M1 / M2 = Core.divide (M1, M2, M_dst)) Debug.Log("m1/m2=" + (m1 / m2).dump()); executionResultText.text += "m1/m2=" + (m1 / m2).dump() + "\n"; // (3 / M1 = Core.divide (new Mat (M1.size (), M1.type (), Scalar.all (3)), M1, M_dst)) Debug.Log("alpha/m2=" + (alpha / m2).dump()); executionResultText.text += "alpha/m2=" + (alpha / m2).dump() + "\n"; // Matrix multiplication: A*B // (M1 * M2 = Core.gemm (M1, M2, 1, new Mat (), 0, M_dst)) Debug.Log("m1*m2=" + (m1 * m2).dump()); executionResultText.text += "m1*m2=" + (m1 * m2).dump() + "\n"; // Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where logicop is one of : &, |, ^. // (M1 & M2 = Core.bitwise_and (M1, M2, M_dst)) Debug.Log("m1&m2=" + (m1 & m2).dump()); executionResultText.text += "m1&m2=" + (m1 & m2).dump() + "\n"; // (M1 | M2 = Core.bitwise_or (M1, M2, M_dst)) Debug.Log("m1|m2=" + (m1 | m2).dump()); executionResultText.text += "m1|m2=" + (m1 | m2).dump() + "\n"; // (M1 ^ M2 = Core.bitwise_xor (M1, M2, M_dst)) Debug.Log("m1^m2=" + (m1 ^ m2).dump()); executionResultText.text += "m1^m2=" + (m1 ^ m2).dump() + "\n"; // (~M1 = Core.bitwise_not (M1, M_dst)) Debug.Log("~m1=" + (~m1).dump()); executionResultText.text += "~m1=" + (~m1).dump() + "\n"; // Note. // The assignment operator behavior is different from OpenCV (c ++). // For example, C = A + B will not be expanded to cv :: add (A, B, C). // Also cannot assign a scalar to Mat like C = s. // In c#, it is not possible to explicitly overload compound assignment operators such as “A *= B“. // Instead, binary operator overloading is used implicitly. // Therefore, whenever an operator is used, a new mat is created and assigned. exampleCodeText.text = @" // // operators example // // 3x3 matrix Mat m1 = new Mat (3, 3, CvType.CV_64FC1); m1.put (0, 0, 1,2,3,4,5,6,7,8,9); Mat m2 = new Mat (3, 3, CvType.CV_64FC1); m2.put (0, 0, 10,11,12,13,14,15,16,17,18); Scalar s = new Scalar (5); double alpha = 3; Debug.Log (""m1="" + m1.dump ()); Debug.Log (""m2="" + m2.dump ()); Debug.Log (""s="" + s); Debug.Log (""alpha="" + alpha); // Addition, subtraction, negation: A+B, A-B, A+s, A-s, s+A, s-A, -A // (M1 + M2 = Core.add (M1, M2, M_dst)) Debug.Log (""m1+m2="" + (m1 + m2).dump()); // (M1 + s = Core.add (M1, s, M_dst)) Debug.Log (""m1+s="" + (m1 + s).dump()); // (M1 - M2 = Core.subtract (M1, M2, M_dst)) Debug.Log (""m1-m2="" + (m1 - m2).dump()); // (M1 - s = Core.subtract (M1, s, M_dst)) Debug.Log (""m1-s="" + (m1 - s).dump()); // (-M1 = Core.multiply (M1, Scalar.all (-1), M_dst)) Debug.Log (""-m1="" + (-m1).dump()); // Scaling: A*alpha A/alpha // (M1 * 3 = Core.multiply (M1, Scalar.all (3), M_dst)) Debug.Log (""m1*alpha="" + (m1*alpha).dump()); // (M1 / 3 = Core.divide (M1, Scalar.all (3), M_dst)) Debug.Log (""m1/alpha="" + (m1/alpha).dump()); // Per-element multiplication and division: A.mul(B), A/B, alpha/A // (M1.mul(M2) = M1.mul (M2)) Debug.Log (""m1.mul(m2)="" + (m1.mul(m2)).dump()); // (M1 / M2 = Core.divide (M1, M2, M_dst)) Debug.Log (""m1/m2="" + (m1 / m2).dump()); // (3 / M1 = Core.divide (new Mat (M1.size (), M1.type (), Scalar.all (3)), M1, M_dst)) Debug.Log (""alpha/m2="" + (alpha / m2).dump()); // Matrix multiplication: A*B // (M1 * M2 = Core.gemm (M1, M2, 1, new Mat (), 0, M_dst)) Debug.Log (""m1*m2="" + (m1 * m2).dump()); // Bitwise logical operations: A logicop B, A logicop s, s logicop A, ~A, where logicop is one of : &, |, ^. // (M1 & M2 = Core.bitwise_and (M1, M2, M_dst)) Debug.Log (""m1&m2="" + (m1 & m2).dump()); // (M1 | M2 = Core.bitwise_or (M1, M2, M_dst)) Debug.Log (""m1|m2="" + (m1 | m2).dump()); // (M1 ^ M2 = Core.bitwise_xor (M1, M2, M_dst)) Debug.Log (""m1^m2="" + (m1 ^ m2).dump()); // (~M1 = Core.bitwise_not (M1, M_dst)) Debug.Log (""~m1="" + (~m1).dump()); // Note. // The assignment operator behavior is different from OpenCV (c ++). // For example, C = A + B will not be expanded to cv :: add (A, B, C). // Also cannot assign a scalar to Mat like C = s. // In c#, it is not possible to explicitly overload compound assignment operators such as “A *= B“. // Instead, binary operator overloading is used implicitly. // Therefore, whenever an operator is used, a new mat is created and assigned. "; UpdateScrollRect(); } public void OnGetAndPutExampleButtonClick() { // // get and put example // // channels=4 3x3 matrix Mat m1 = new Mat(3, 3, CvType.CV_8UC4, new Scalar(1, 2, 3, 4)); Debug.Log("m1=" + m1.dump()); executionResultText.text = "m1=" + m1.dump() + "\n"; // get an element value. double[] m1_1_1 = m1.get(1, 1); Debug.Log("m1[1,1]=" + m1_1_1[0] + ", " + m1_1_1[1] + ", " + m1_1_1[2] + ", " + m1_1_1[3]); executionResultText.text += "m1[1,1]=" + m1_1_1[0] + ", " + m1_1_1[1] + ", " + m1_1_1[2] + ", " + m1_1_1[3] + "\n"; // get an array of all element values. byte[] m1_array = new byte[m1.total() * m1.channels()]; m1.get(0, 0, m1_array); string dump_str = ""; foreach (var i in m1_array) { dump_str += i + ", "; } Debug.Log("m1_array=" + dump_str); executionResultText.text += "m1_array=" + dump_str + "\n"; // another faster way. (use MatUtils.copyFromMat()) MatUtils.copyFromMat(m1, m1_array); dump_str = ""; foreach (var i in m1_array) { dump_str += i + ", "; } Debug.Log("m1_array (use MatUtils.copyFromMat())=" + dump_str); executionResultText.text += "m1_array (use MatUtils.copyFromMat())=" + dump_str + "\n"; // put an element value in a matrix. Mat m2 = m1.clone(); m2.put(1, 1, 5, 6, 7, 8); Debug.Log("m2=" + m2.dump()); executionResultText.text += "m2=" + m2.dump() + "\n"; // put an array of element values in a matrix. byte[] m2_arr = new byte[] { 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8 }; m2.put(0, 0, m2_arr); Debug.Log("m2=" + m2.dump()); executionResultText.text += "m2=" + m2.dump() + "\n"; // another faster way. (use MatUtils.copyToMat()) MatUtils.copyToMat(m2_arr, m2); Debug.Log("m2 (use MatUtils.copyToMat())=" + m2.dump()); executionResultText.text += "m2 (use MatUtils.copyToMat())=" + m2.dump() + "\n"; // fill element values (setTo method) m2.setTo(new Scalar(100, 100, 100, 100)); Debug.Log("m2=" + m2.dump()); executionResultText.text += "m2=" + m2.dump() + "\n"; exampleCodeText.text = @" // // get and put example // // channels=4 3x3 matrix Mat m1 = new Mat (3, 3, CvType.CV_8UC4 , new Scalar(1,2,3,4)); Debug.Log (""m1="" + m1.dump ()); // get an element value. double[] m1_1_1 = m1.get(1,1); Debug.Log (""m1[1,1]="" + m1_1_1[0] + "", "" + m1_1_1[1] + "", "" + m1_1_1[2] + "", "" + m1_1_1[3]); // get an array of all element values. byte[] m1_array = new byte[m1.total () * m1.channels()]; m1.get (0, 0, m1_array); string dump_str = """"; foreach (var i in m1_array){ dump_str += i + "", ""; } Debug.Log (""m1_array="" + dump_str); // another faster way. (use MatUtils.copyFromMat()) MatUtils.copyFromMat (m1, m1_array); dump_str = """"; foreach (var i in m1_array) { dump_str += i + "", ""; } Debug.Log (""m1_array (use MatUtils.copyFromMat())="" + dump_str); // put an element value in a matrix. Mat m2 = m1.clone (); m2.put (1, 1, 5,6,7,8); Debug.Log (""m2="" + m2.dump ()); // put an array of element values in a matrix. byte[] m2_arr = new byte[]{5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8,5,6,7,8}; m2.put (0, 0, m2_arr); Debug.Log (""m2="" + m2.dump ()); // another faster way. (use MatUtils.copyToMat()) MatUtils.copyToMat (m2_arr, m2); Debug.Log (""m2 (use MatUtils.copyToMat())="" + m2.dump ()); // fill element values (setTo method) m2.setTo(new Scalar(100,100,100,100)); Debug.Log (""m2="" + m2.dump ()); "; UpdateScrollRect(); } public void OnAccessingPixelValueExampleButtonClick() { // // accessing pixel value example // // How access pixel value in an OpenCV Mat. // channels=4 512x512 matrix (RGBA color image) Mat imgMat = new Mat(512, 512, CvType.CV_8UC4, new Scalar(0, 0, 0, 255)); System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch(); // // 1. Use get and put method. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Start(); int rows = imgMat.rows(); int cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte[] p = new byte[4]; imgMat.get(i0, i1, p); p[0] = (byte)(p[0] + 127); // R p[1] = (byte)(p[1] + 127); // G p[2] = (byte)(p[2] + 127); // B imgMat.put(i0, i1, p); } } watch.Stop(); Debug.Log("1. Use get and put method. time: " + watch.ElapsedMilliseconds + " ms"); executionResultText.text = "1. Use get and put method. time: " + watch.ElapsedMilliseconds + " ms" + "\n"; // // 2. Use MatIndexer. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); MatIndexer indexer = new MatIndexer(imgMat); rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte[] p = new byte[4]; indexer.get(i0, i1, p); p[0] = (byte)(p[0] + 127); // R p[1] = (byte)(p[1] + 127); // G p[2] = (byte)(p[2] + 127); // B indexer.put(i0, i1, p); } } watch.Stop(); Debug.Log("2. Use MatIndexer. time: " + watch.ElapsedMilliseconds + " ms"); executionResultText.text += "2. Use MatIndexer. time: " + watch.ElapsedMilliseconds + " ms" + "\n"; // // 3. Use MatUtils.copyFromMat and MatUtils.copyToMat method. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); // Copies an OpenCV Mat data to a pixel data Array. byte[] img_array = new byte[imgMat.total() * imgMat.channels()]; MatUtils.copyFromMat(imgMat, img_array); long step0 = imgMat.step1(0); long step1 = imgMat.step1(1); rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { long p1 = step0 * i0 + step1 * i1; long p2 = p1 + 1; long p3 = p1 + 2; img_array[p1] = (byte)(img_array[p1] + 127); // R img_array[p2] = (byte)(img_array[p2] + 127); // G img_array[p3] = (byte)(img_array[p3] + 127); // B } } // Copies a pixel data Array to an OpenCV Mat data. MatUtils.copyToMat(img_array, imgMat); watch.Stop(); Debug.Log("3. Use MatUtils.copyFromMat and MatUtils.copyToMat method. time: " + watch.ElapsedMilliseconds + " ms"); executionResultText.text += "3. Use MatUtils.copyFromMat and MatUtils.copyToMat method. time: " + watch.ElapsedMilliseconds + " ms" + "\n"; #if OPENCV_USE_UNSAFE_CODE // // 4. Use pointer access. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); step0 = imgMat.step1(0); step1 = imgMat.step1(1); long ptrVal = imgMat.dataAddr(); unsafe { rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte* p1 = (byte*)(ptrVal + (step0 * i0) + (step1 * i1)); byte* p2 = p1 + 1; byte* p3 = p1 + 2; *p1 = (byte)(*p1 + 127); // R *p2 = (byte)(*p2 + 127); // G *p3 = (byte)(*p3 + 127); // B } } } watch.Stop(); Debug.Log("4. Use pointer access. time: " + watch.ElapsedMilliseconds + " ms"); executionResultText.text += "4. Use pointer access. time: " + watch.ElapsedMilliseconds + " ms" + "\n"; #endif exampleCodeText.text = @" // // accessing pixel value example // // How access pixel value in an OpenCV Mat. // channels=4 512x512 matrix (RGBA color image) Mat imgMat = new Mat (512, 512, CvType.CV_8UC4, new Scalar(0, 0, 0, 255)); System.Diagnostics.Stopwatch watch = new System.Diagnostics.Stopwatch(); // // 1. Use get and put method. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Start(); int rows = imgMat.rows(); int cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte[] p = new byte[4]; imgMat.get(i0, i1, p); p[0] = (byte)(p[0] + 127); // R p[1] = (byte)(p[1] + 127); // G p[2] = (byte)(p[2] + 127); // B imgMat.put(i0, i1, p); } } watch.Stop(); Debug.Log(""1.Use get and put method. time: "" + watch.ElapsedMilliseconds + "" ms""); // // 2. Use MatIndexer. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); MatIndexer indexer = new MatIndexer(imgMat); rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte[] p = new byte[4]; indexer.get(i0, i1, p); p[0] = (byte)(p[0] + 127); // R p[1] = (byte)(p[1] + 127); // G p[2] = (byte)(p[2] + 127); // B indexer.put(i0, i1, p); } } watch.Stop(); Debug.Log(""2. Use MatIndexer. time: "" + watch.ElapsedMilliseconds + "" ms""); // // 3. Use MatUtils.copyFromMat and MatUtils.copyToMat method. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); // Copies an OpenCV Mat data to a pixel data Array. byte[] img_array = new byte[imgMat.total() * imgMat.channels()]; MatUtils.copyFromMat(imgMat, img_array); long step0 = imgMat.step1(0); long step1 = imgMat.step1(1); rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { long p1 = step0 * i0 + step1 * i1; long p2 = p1 + 1; long p3 = p1 + 2; img_array[p1] = (byte)(img_array[p1] + 127); // R img_array[p2] = (byte)(img_array[p2] + 127); // G img_array[p3] = (byte)(img_array[p3] + 127); // B } } // Copies a pixel data Array to an OpenCV Mat data. MatUtils.copyToMat(img_array, imgMat); watch.Stop(); Debug.Log(""3. Use MatUtils.copyFromMat and MatUtils.copyToMat method. time: "" + watch.ElapsedMilliseconds + "" ms""); #if OPENCV_USE_UNSAFE_CODE // // 4. Use pointer access. // imgMat.setTo(new Scalar(0, 0, 0, 255)); watch.Reset(); watch.Start(); step0 = imgMat.step1(0); step1 = imgMat.step1(1); long ptrVal = imgMat.dataAddr(); unsafe { rows = imgMat.rows(); cols = imgMat.cols(); for (int i0 = 0; i0 < rows; i0++) { for (int i1 = 0; i1 < cols; i1++) { byte* p1 = (byte*)(ptrVal + (step0 * i0) + (step1 * i1)); byte* p2 = p1 + 1; byte* p3 = p1 + 2; *p1 = (byte)(*p1 + 127); // R *p2 = (byte)(*p2 + 127); // G *p3 = (byte)(*p3 + 127); // B } } } watch.Stop(); Debug.Log(""4. Use pointer access. time: "" + watch.ElapsedMilliseconds + "" ms""); #endif "; UpdateScrollRect(); } } }