#if !UNITY_WSA_10_0 using OpenCVForUnity.CoreModule; using OpenCVForUnity.UtilsModule; using System; using System.Collections.Generic; using System.Runtime.InteropServices; namespace OpenCVForUnity.TextModule { // C++: class TextDetectorCNN /** * TextDetectorCNN class provides the functionallity of text bounding box detection. * This class is representing to find bounding boxes of text words given an input image. * This class uses OpenCV dnn module to load pre-trained model described in CITE: LiaoSBWL17. * The original repository with the modified SSD Caffe version: https://github.com/MhLiao/TextBoxes. * Model can be downloaded from [DropBox](https://www.dropbox.com/s/g8pjzv2de9gty8g/TextBoxes_icdar13.caffemodel?dl=0). * Modified .prototxt file with the model description can be found in {code opencv_contrib/modules/text/samples/textbox.prototxt}. */ public class TextDetectorCNN : TextDetector { protected override void Dispose(bool disposing) { try { if (disposing) { } if (IsEnabledDispose) { if (nativeObj != IntPtr.Zero) text_TextDetectorCNN_delete(nativeObj); nativeObj = IntPtr.Zero; } } finally { base.Dispose(disposing); } } protected internal TextDetectorCNN(IntPtr addr) : base(addr) { } // internal usage only public static new TextDetectorCNN __fromPtr__(IntPtr addr) { return new TextDetectorCNN(addr); } // // C++: void cv::text::TextDetectorCNN::detect(Mat inputImage, vector_Rect& Bbox, vector_float& confidence) // /** * * * param inputImage an image expected to be a CV_U8C3 of any size * param Bbox a vector of Rect that will store the detected word bounding box * param confidence a vector of float that will be updated with the confidence the classifier has for the selected bounding box */ public override void detect(Mat inputImage, MatOfRect Bbox, MatOfFloat confidence) { ThrowIfDisposed(); if (inputImage != null) inputImage.ThrowIfDisposed(); if (Bbox != null) Bbox.ThrowIfDisposed(); if (confidence != null) confidence.ThrowIfDisposed(); Mat Bbox_mat = Bbox; Mat confidence_mat = confidence; text_TextDetectorCNN_detect_10(nativeObj, inputImage.nativeObj, Bbox_mat.nativeObj, confidence_mat.nativeObj); } // // C++: static Ptr_TextDetectorCNN cv::text::TextDetectorCNN::create(String modelArchFilename, String modelWeightsFilename) // public static TextDetectorCNN create(string modelArchFilename, string modelWeightsFilename) { return TextDetectorCNN.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(text_TextDetectorCNN_create_10(modelArchFilename, modelWeightsFilename))); } #if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR const string LIBNAME = "__Internal"; #else const string LIBNAME = "opencvforunity"; #endif // C++: void cv::text::TextDetectorCNN::detect(Mat inputImage, vector_Rect& Bbox, vector_float& confidence) [DllImport(LIBNAME)] private static extern void text_TextDetectorCNN_detect_10(IntPtr nativeObj, IntPtr inputImage_nativeObj, IntPtr Bbox_mat_nativeObj, IntPtr confidence_mat_nativeObj); // C++: static Ptr_TextDetectorCNN cv::text::TextDetectorCNN::create(String modelArchFilename, String modelWeightsFilename) [DllImport(LIBNAME)] private static extern IntPtr text_TextDetectorCNN_create_10(string modelArchFilename, string modelWeightsFilename); // native support for java finalize() [DllImport(LIBNAME)] private static extern void text_TextDetectorCNN_delete(IntPtr nativeObj); } } #endif