using OpenCVForUnity.CoreModule; using OpenCVForUnity.UtilsModule; using System; using System.Collections.Generic; using System.Runtime.InteropServices; namespace OpenCVForUnity.ImgprocModule { // C++: class Imgproc public class Imgproc { private const int IPL_BORDER_CONSTANT = 0; private const int IPL_BORDER_REPLICATE = 1; private const int IPL_BORDER_REFLECT = 2; private const int IPL_BORDER_WRAP = 3; private const int IPL_BORDER_REFLECT_101 = 4; private const int IPL_BORDER_TRANSPARENT = 5; private const int CV_INTER_NN = 0; private const int CV_INTER_LINEAR = 1; private const int CV_INTER_CUBIC = 2; private const int CV_INTER_AREA = 3; private const int CV_INTER_LANCZOS4 = 4; private const int CV_MOP_ERODE = 0; private const int CV_MOP_DILATE = 1; private const int CV_MOP_OPEN = 2; private const int CV_MOP_CLOSE = 3; private const int CV_MOP_GRADIENT = 4; private const int CV_MOP_TOPHAT = 5; private const int CV_MOP_BLACKHAT = 6; private const int CV_RETR_EXTERNAL = 0; private const int CV_RETR_LIST = 1; private const int CV_RETR_CCOMP = 2; private const int CV_RETR_TREE = 3; private const int CV_RETR_FLOODFILL = 4; private const int CV_CHAIN_APPROX_NONE = 1; private const int CV_CHAIN_APPROX_SIMPLE = 2; private const int CV_CHAIN_APPROX_TC89_L1 = 3; private const int CV_CHAIN_APPROX_TC89_KCOS = 4; private const int CV_THRESH_BINARY = 0; private const int CV_THRESH_BINARY_INV = 1; private const int CV_THRESH_TRUNC = 2; private const int CV_THRESH_TOZERO = 3; private const int CV_THRESH_TOZERO_INV = 4; private const int CV_THRESH_MASK = 7; private const int CV_THRESH_OTSU = 8; private const int CV_THRESH_TRIANGLE = 16; // C++: enum public const int CV_GAUSSIAN_5x5 = 7; public const int CV_SCHARR = -1; public const int CV_MAX_SOBEL_KSIZE = 7; public const int CV_RGBA2mRGBA = 125; public const int CV_mRGBA2RGBA = 126; public const int CV_WARP_FILL_OUTLIERS = 8; public const int CV_WARP_INVERSE_MAP = 16; public const int CV_CHAIN_CODE = 0; public const int CV_LINK_RUNS = 5; public const int CV_POLY_APPROX_DP = 0; public const int CV_CONTOURS_MATCH_I1 = 1; public const int CV_CONTOURS_MATCH_I2 = 2; public const int CV_CONTOURS_MATCH_I3 = 3; public const int CV_CLOCKWISE = 1; public const int CV_COUNTER_CLOCKWISE = 2; public const int CV_COMP_CORREL = 0; public const int CV_COMP_CHISQR = 1; public const int CV_COMP_INTERSECT = 2; public const int CV_COMP_BHATTACHARYYA = 3; public const int CV_COMP_HELLINGER = CV_COMP_BHATTACHARYYA; public const int CV_COMP_CHISQR_ALT = 4; public const int CV_COMP_KL_DIV = 5; public const int CV_DIST_MASK_3 = 3; public const int CV_DIST_MASK_5 = 5; public const int CV_DIST_MASK_PRECISE = 0; public const int CV_DIST_LABEL_CCOMP = 0; public const int CV_DIST_LABEL_PIXEL = 1; public const int CV_DIST_USER = -1; public const int CV_DIST_L1 = 1; public const int CV_DIST_L2 = 2; public const int CV_DIST_C = 3; public const int CV_DIST_L12 = 4; public const int CV_DIST_FAIR = 5; public const int CV_DIST_WELSCH = 6; public const int CV_DIST_HUBER = 7; public const int CV_CANNY_L2_GRADIENT = (1 << 31); public const int CV_HOUGH_STANDARD = 0; public const int CV_HOUGH_PROBABILISTIC = 1; public const int CV_HOUGH_MULTI_SCALE = 2; public const int CV_HOUGH_GRADIENT = 3; // C++: enum MorphShapes_c public const int CV_SHAPE_RECT = 0; public const int CV_SHAPE_CROSS = 1; public const int CV_SHAPE_ELLIPSE = 2; public const int CV_SHAPE_CUSTOM = 100; // C++: enum SmoothMethod_c public const int CV_BLUR_NO_SCALE = 0; public const int CV_BLUR = 1; public const int CV_GAUSSIAN = 2; public const int CV_MEDIAN = 3; public const int CV_BILATERAL = 4; // C++: enum cv.AdaptiveThresholdTypes public const int ADAPTIVE_THRESH_MEAN_C = 0; public const int ADAPTIVE_THRESH_GAUSSIAN_C = 1; // C++: enum cv.ColorConversionCodes public const int COLOR_BGR2BGRA = 0; public const int COLOR_RGB2RGBA = COLOR_BGR2BGRA; public const int COLOR_BGRA2BGR = 1; public const int COLOR_RGBA2RGB = COLOR_BGRA2BGR; public const int COLOR_BGR2RGBA = 2; public const int COLOR_RGB2BGRA = COLOR_BGR2RGBA; public const int COLOR_RGBA2BGR = 3; public const int COLOR_BGRA2RGB = COLOR_RGBA2BGR; public const int COLOR_BGR2RGB = 4; public const int COLOR_RGB2BGR = COLOR_BGR2RGB; public const int COLOR_BGRA2RGBA = 5; public const int COLOR_RGBA2BGRA = COLOR_BGRA2RGBA; public const int COLOR_BGR2GRAY = 6; public const int COLOR_RGB2GRAY = 7; public const int COLOR_GRAY2BGR = 8; public const int COLOR_GRAY2RGB = COLOR_GRAY2BGR; public const int COLOR_GRAY2BGRA = 9; public const int COLOR_GRAY2RGBA = COLOR_GRAY2BGRA; public const int COLOR_BGRA2GRAY = 10; public const int COLOR_RGBA2GRAY = 11; public const int COLOR_BGR2BGR565 = 12; public const int COLOR_RGB2BGR565 = 13; public const int COLOR_BGR5652BGR = 14; public const int COLOR_BGR5652RGB = 15; public const int COLOR_BGRA2BGR565 = 16; public const int COLOR_RGBA2BGR565 = 17; public const int COLOR_BGR5652BGRA = 18; public const int COLOR_BGR5652RGBA = 19; public const int COLOR_GRAY2BGR565 = 20; public const int COLOR_BGR5652GRAY = 21; public const int COLOR_BGR2BGR555 = 22; public const int COLOR_RGB2BGR555 = 23; public const int COLOR_BGR5552BGR = 24; public const int COLOR_BGR5552RGB = 25; public const int COLOR_BGRA2BGR555 = 26; public const int COLOR_RGBA2BGR555 = 27; public const int COLOR_BGR5552BGRA = 28; public const int COLOR_BGR5552RGBA = 29; public const int COLOR_GRAY2BGR555 = 30; public const int COLOR_BGR5552GRAY = 31; public const int COLOR_BGR2XYZ = 32; public const int COLOR_RGB2XYZ = 33; public const int COLOR_XYZ2BGR = 34; public const int COLOR_XYZ2RGB = 35; public const int COLOR_BGR2YCrCb = 36; public const int COLOR_RGB2YCrCb = 37; public const int COLOR_YCrCb2BGR = 38; public const int COLOR_YCrCb2RGB = 39; public const int COLOR_BGR2HSV = 40; public const int COLOR_RGB2HSV = 41; public const int COLOR_BGR2Lab = 44; public const int COLOR_RGB2Lab = 45; public const int COLOR_BGR2Luv = 50; public const int COLOR_RGB2Luv = 51; public const int COLOR_BGR2HLS = 52; public const int COLOR_RGB2HLS = 53; public const int COLOR_HSV2BGR = 54; public const int COLOR_HSV2RGB = 55; public const int COLOR_Lab2BGR = 56; public const int COLOR_Lab2RGB = 57; public const int COLOR_Luv2BGR = 58; public const int COLOR_Luv2RGB = 59; public const int COLOR_HLS2BGR = 60; public const int COLOR_HLS2RGB = 61; public const int COLOR_BGR2HSV_FULL = 66; public const int COLOR_RGB2HSV_FULL = 67; public const int COLOR_BGR2HLS_FULL = 68; public const int COLOR_RGB2HLS_FULL = 69; public const int COLOR_HSV2BGR_FULL = 70; public const int COLOR_HSV2RGB_FULL = 71; public const int COLOR_HLS2BGR_FULL = 72; public const int COLOR_HLS2RGB_FULL = 73; public const int COLOR_LBGR2Lab = 74; public const int COLOR_LRGB2Lab = 75; public const int COLOR_LBGR2Luv = 76; public const int COLOR_LRGB2Luv = 77; public const int COLOR_Lab2LBGR = 78; public const int COLOR_Lab2LRGB = 79; public const int COLOR_Luv2LBGR = 80; public const int COLOR_Luv2LRGB = 81; public const int COLOR_BGR2YUV = 82; public const int COLOR_RGB2YUV = 83; public const int COLOR_YUV2BGR = 84; public const int COLOR_YUV2RGB = 85; public const int COLOR_YUV2RGB_NV12 = 90; public const int COLOR_YUV2BGR_NV12 = 91; public const int COLOR_YUV2RGB_NV21 = 92; public const int COLOR_YUV2BGR_NV21 = 93; public const int COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21; public const int COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21; public const int COLOR_YUV2RGBA_NV12 = 94; public const int COLOR_YUV2BGRA_NV12 = 95; public const int COLOR_YUV2RGBA_NV21 = 96; public const int COLOR_YUV2BGRA_NV21 = 97; public const int COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21; public const int COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21; public const int COLOR_YUV2RGB_YV12 = 98; public const int COLOR_YUV2BGR_YV12 = 99; public const int COLOR_YUV2RGB_IYUV = 100; public const int COLOR_YUV2BGR_IYUV = 101; public const int COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV; public const int COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV; public const int COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12; public const int COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12; public const int COLOR_YUV2RGBA_YV12 = 102; public const int COLOR_YUV2BGRA_YV12 = 103; public const int COLOR_YUV2RGBA_IYUV = 104; public const int COLOR_YUV2BGRA_IYUV = 105; public const int COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV; public const int COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV; public const int COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12; public const int COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12; public const int COLOR_YUV2GRAY_420 = 106; public const int COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420; public const int COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420; public const int COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420; public const int COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420; public const int COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420; public const int COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420; public const int COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420; public const int COLOR_YUV2RGB_UYVY = 107; public const int COLOR_YUV2BGR_UYVY = 108; public const int COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY; public const int COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY; public const int COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY; public const int COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY; public const int COLOR_YUV2RGBA_UYVY = 111; public const int COLOR_YUV2BGRA_UYVY = 112; public const int COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY; public const int COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY; public const int COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY; public const int COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY; public const int COLOR_YUV2RGB_YUY2 = 115; public const int COLOR_YUV2BGR_YUY2 = 116; public const int COLOR_YUV2RGB_YVYU = 117; public const int COLOR_YUV2BGR_YVYU = 118; public const int COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2; public const int COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2; public const int COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2; public const int COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2; public const int COLOR_YUV2RGBA_YUY2 = 119; public const int COLOR_YUV2BGRA_YUY2 = 120; public const int COLOR_YUV2RGBA_YVYU = 121; public const int COLOR_YUV2BGRA_YVYU = 122; public const int COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2; public const int COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2; public const int COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2; public const int COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2; public const int COLOR_YUV2GRAY_UYVY = 123; public const int COLOR_YUV2GRAY_YUY2 = 124; public const int COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY; public const int COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY; public const int COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2; public const int COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2; public const int COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2; public const int COLOR_RGBA2mRGBA = 125; public const int COLOR_mRGBA2RGBA = 126; public const int COLOR_RGB2YUV_I420 = 127; public const int COLOR_BGR2YUV_I420 = 128; public const int COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420; public const int COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420; public const int COLOR_RGBA2YUV_I420 = 129; public const int COLOR_BGRA2YUV_I420 = 130; public const int COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420; public const int COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420; public const int COLOR_RGB2YUV_YV12 = 131; public const int COLOR_BGR2YUV_YV12 = 132; public const int COLOR_RGBA2YUV_YV12 = 133; public const int COLOR_BGRA2YUV_YV12 = 134; public const int COLOR_BayerBG2BGR = 46; public const int COLOR_BayerGB2BGR = 47; public const int COLOR_BayerRG2BGR = 48; public const int COLOR_BayerGR2BGR = 49; public const int COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR; public const int COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR; public const int COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR; public const int COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR; public const int COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR; public const int COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR; public const int COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR; public const int COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR; public const int COLOR_BayerBG2RGB = COLOR_BayerRG2BGR; public const int COLOR_BayerGB2RGB = COLOR_BayerGR2BGR; public const int COLOR_BayerRG2RGB = COLOR_BayerBG2BGR; public const int COLOR_BayerGR2RGB = COLOR_BayerGB2BGR; public const int COLOR_BayerBG2GRAY = 86; public const int COLOR_BayerGB2GRAY = 87; public const int COLOR_BayerRG2GRAY = 88; public const int COLOR_BayerGR2GRAY = 89; public const int COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY; public const int COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY; public const int COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY; public const int COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY; public const int COLOR_BayerBG2BGR_VNG = 62; public const int COLOR_BayerGB2BGR_VNG = 63; public const int COLOR_BayerRG2BGR_VNG = 64; public const int COLOR_BayerGR2BGR_VNG = 65; public const int COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG; public const int COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG; public const int COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG; public const int COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG; public const int COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG; public const int COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG; public const int COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG; public const int COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG; public const int COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG; public const int COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG; public const int COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG; public const int COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG; public const int COLOR_BayerBG2BGR_EA = 135; public const int COLOR_BayerGB2BGR_EA = 136; public const int COLOR_BayerRG2BGR_EA = 137; public const int COLOR_BayerGR2BGR_EA = 138; public const int COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA; public const int COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA; public const int COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA; public const int COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA; public const int COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA; public const int COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA; public const int COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA; public const int COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA; public const int COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA; public const int COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA; public const int COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA; public const int COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA; public const int COLOR_BayerBG2BGRA = 139; public const int COLOR_BayerGB2BGRA = 140; public const int COLOR_BayerRG2BGRA = 141; public const int COLOR_BayerGR2BGRA = 142; public const int COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA; public const int COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA; public const int COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA; public const int COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA; public const int COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA; public const int COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA; public const int COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA; public const int COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA; public const int COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA; public const int COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA; public const int COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA; public const int COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA; public const int COLOR_COLORCVT_MAX = 143; // C++: enum cv.ColormapTypes public const int COLORMAP_AUTUMN = 0; public const int COLORMAP_BONE = 1; public const int COLORMAP_JET = 2; public const int COLORMAP_WINTER = 3; public const int COLORMAP_RAINBOW = 4; public const int COLORMAP_OCEAN = 5; public const int COLORMAP_SUMMER = 6; public const int COLORMAP_SPRING = 7; public const int COLORMAP_COOL = 8; public const int COLORMAP_HSV = 9; public const int COLORMAP_PINK = 10; public const int COLORMAP_HOT = 11; public const int COLORMAP_PARULA = 12; public const int COLORMAP_MAGMA = 13; public const int COLORMAP_INFERNO = 14; public const int COLORMAP_PLASMA = 15; public const int COLORMAP_VIRIDIS = 16; public const int COLORMAP_CIVIDIS = 17; public const int COLORMAP_TWILIGHT = 18; public const int COLORMAP_TWILIGHT_SHIFTED = 19; public const int COLORMAP_TURBO = 20; public const int COLORMAP_DEEPGREEN = 21; // C++: enum cv.ConnectedComponentsAlgorithmsTypes public const int CCL_DEFAULT = -1; public const int CCL_WU = 0; public const int CCL_GRANA = 1; public const int CCL_BOLELLI = 2; public const int CCL_SAUF = 3; public const int CCL_BBDT = 4; public const int CCL_SPAGHETTI = 5; // C++: enum cv.ConnectedComponentsTypes public const int CC_STAT_LEFT = 0; public const int CC_STAT_TOP = 1; public const int CC_STAT_WIDTH = 2; public const int CC_STAT_HEIGHT = 3; public const int CC_STAT_AREA = 4; public const int CC_STAT_MAX = 5; // C++: enum cv.ContourApproximationModes public const int CHAIN_APPROX_NONE = 1; public const int CHAIN_APPROX_SIMPLE = 2; public const int CHAIN_APPROX_TC89_L1 = 3; public const int CHAIN_APPROX_TC89_KCOS = 4; // C++: enum cv.DistanceTransformLabelTypes public const int DIST_LABEL_CCOMP = 0; public const int DIST_LABEL_PIXEL = 1; // C++: enum cv.DistanceTransformMasks public const int DIST_MASK_3 = 3; public const int DIST_MASK_5 = 5; public const int DIST_MASK_PRECISE = 0; // C++: enum cv.DistanceTypes public const int DIST_USER = -1; public const int DIST_L1 = 1; public const int DIST_L2 = 2; public const int DIST_C = 3; public const int DIST_L12 = 4; public const int DIST_FAIR = 5; public const int DIST_WELSCH = 6; public const int DIST_HUBER = 7; // C++: enum cv.FloodFillFlags public const int FLOODFILL_FIXED_RANGE = 1 << 16; public const int FLOODFILL_MASK_ONLY = 1 << 17; // C++: enum cv.GrabCutClasses public const int GC_BGD = 0; public const int GC_FGD = 1; public const int GC_PR_BGD = 2; public const int GC_PR_FGD = 3; // C++: enum cv.GrabCutModes public const int GC_INIT_WITH_RECT = 0; public const int GC_INIT_WITH_MASK = 1; public const int GC_EVAL = 2; public const int GC_EVAL_FREEZE_MODEL = 3; // C++: enum cv.HersheyFonts public const int FONT_HERSHEY_SIMPLEX = 0; public const int FONT_HERSHEY_PLAIN = 1; public const int FONT_HERSHEY_DUPLEX = 2; public const int FONT_HERSHEY_COMPLEX = 3; public const int FONT_HERSHEY_TRIPLEX = 4; public const int FONT_HERSHEY_COMPLEX_SMALL = 5; public const int FONT_HERSHEY_SCRIPT_SIMPLEX = 6; public const int FONT_HERSHEY_SCRIPT_COMPLEX = 7; public const int FONT_ITALIC = 16; // C++: enum cv.HistCompMethods public const int HISTCMP_CORREL = 0; public const int HISTCMP_CHISQR = 1; public const int HISTCMP_INTERSECT = 2; public const int HISTCMP_BHATTACHARYYA = 3; public const int HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA; public const int HISTCMP_CHISQR_ALT = 4; public const int HISTCMP_KL_DIV = 5; // C++: enum cv.HoughModes public const int HOUGH_STANDARD = 0; public const int HOUGH_PROBABILISTIC = 1; public const int HOUGH_MULTI_SCALE = 2; public const int HOUGH_GRADIENT = 3; public const int HOUGH_GRADIENT_ALT = 4; // C++: enum cv.InterpolationFlags public const int INTER_NEAREST = 0; public const int INTER_LINEAR = 1; public const int INTER_CUBIC = 2; public const int INTER_AREA = 3; public const int INTER_LANCZOS4 = 4; public const int INTER_LINEAR_EXACT = 5; public const int INTER_NEAREST_EXACT = 6; public const int INTER_MAX = 7; public const int WARP_FILL_OUTLIERS = 8; public const int WARP_INVERSE_MAP = 16; // C++: enum cv.InterpolationMasks public const int INTER_BITS = 5; public const int INTER_BITS2 = INTER_BITS * 2; public const int INTER_TAB_SIZE = 1 << INTER_BITS; public const int INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE; // C++: enum cv.LineSegmentDetectorModes public const int LSD_REFINE_NONE = 0; public const int LSD_REFINE_STD = 1; public const int LSD_REFINE_ADV = 2; // C++: enum cv.LineTypes public const int FILLED = -1; public const int LINE_4 = 4; public const int LINE_8 = 8; public const int LINE_AA = 16; // C++: enum cv.MarkerTypes public const int MARKER_CROSS = 0; public const int MARKER_TILTED_CROSS = 1; public const int MARKER_STAR = 2; public const int MARKER_DIAMOND = 3; public const int MARKER_SQUARE = 4; public const int MARKER_TRIANGLE_UP = 5; public const int MARKER_TRIANGLE_DOWN = 6; // C++: enum cv.MorphShapes public const int MORPH_RECT = 0; public const int MORPH_CROSS = 1; public const int MORPH_ELLIPSE = 2; // C++: enum cv.MorphTypes public const int MORPH_ERODE = 0; public const int MORPH_DILATE = 1; public const int MORPH_OPEN = 2; public const int MORPH_CLOSE = 3; public const int MORPH_GRADIENT = 4; public const int MORPH_TOPHAT = 5; public const int MORPH_BLACKHAT = 6; public const int MORPH_HITMISS = 7; // C++: enum cv.RectanglesIntersectTypes public const int INTERSECT_NONE = 0; public const int INTERSECT_PARTIAL = 1; public const int INTERSECT_FULL = 2; // C++: enum cv.RetrievalModes public const int RETR_EXTERNAL = 0; public const int RETR_LIST = 1; public const int RETR_CCOMP = 2; public const int RETR_TREE = 3; public const int RETR_FLOODFILL = 4; // C++: enum cv.ShapeMatchModes public const int CONTOURS_MATCH_I1 = 1; public const int CONTOURS_MATCH_I2 = 2; public const int CONTOURS_MATCH_I3 = 3; // C++: enum cv.SpecialFilter public const int FILTER_SCHARR = -1; // C++: enum cv.TemplateMatchModes public const int TM_SQDIFF = 0; public const int TM_SQDIFF_NORMED = 1; public const int TM_CCORR = 2; public const int TM_CCORR_NORMED = 3; public const int TM_CCOEFF = 4; public const int TM_CCOEFF_NORMED = 5; // C++: enum cv.ThresholdTypes public const int THRESH_BINARY = 0; public const int THRESH_BINARY_INV = 1; public const int THRESH_TRUNC = 2; public const int THRESH_TOZERO = 3; public const int THRESH_TOZERO_INV = 4; public const int THRESH_MASK = 7; public const int THRESH_OTSU = 8; public const int THRESH_TRIANGLE = 16; // C++: enum cv.WarpPolarMode public const int WARP_POLAR_LINEAR = 0; public const int WARP_POLAR_LOG = 256; // // C++: Ptr_LineSegmentDetector cv::createLineSegmentDetector(int refine = LSD_REFINE_STD, double scale = 0.8, double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, double log_eps = 0, double density_th = 0.7, int n_bins = 1024) // /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * param quant Bound to the quantization error on the gradient norm. * param ang_th Gradient angle tolerance in degrees. * param log_eps Detection threshold: -log10(NFA) > log_eps. Used only when advance refinement is chosen. * param density_th Minimal density of aligned region points in the enclosing rectangle. * param n_bins Number of bins in pseudo-ordering of gradient modulus. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th, int n_bins) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_10(refine, scale, sigma_scale, quant, ang_th, log_eps, density_th, n_bins))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * param quant Bound to the quantization error on the gradient norm. * param ang_th Gradient angle tolerance in degrees. * param log_eps Detection threshold: -log10(NFA) > log_eps. Used only when advance refinement is chosen. * param density_th Minimal density of aligned region points in the enclosing rectangle. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_11(refine, scale, sigma_scale, quant, ang_th, log_eps, density_th))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * param quant Bound to the quantization error on the gradient norm. * param ang_th Gradient angle tolerance in degrees. * param log_eps Detection threshold: -log10(NFA) > log_eps. Used only when advance refinement is chosen. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_12(refine, scale, sigma_scale, quant, ang_th, log_eps))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * param quant Bound to the quantization error on the gradient norm. * param ang_th Gradient angle tolerance in degrees. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant, double ang_th) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_13(refine, scale, sigma_scale, quant, ang_th))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * param quant Bound to the quantization error on the gradient norm. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale, double quant) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_14(refine, scale, sigma_scale, quant))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale, double sigma_scale) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_15(refine, scale, sigma_scale))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * param scale The scale of the image that will be used to find the lines. Range (0..1]. * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine, double scale) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_16(refine, scale))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * param refine The way found lines will be refined, see #LineSegmentDetectorModes * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector(int refine) { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_17(refine))); } /** * Creates a smart pointer to a LineSegmentDetector object and initializes it. * * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want * to edit those, as to tailor it for their own application. * * return automatically generated */ public static LineSegmentDetector createLineSegmentDetector() { return LineSegmentDetector.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createLineSegmentDetector_18())); } // // C++: Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) // /** * Returns Gaussian filter coefficients. * * The function computes and returns the \(\texttt{ksize} \times 1\) matrix of Gaussian filter * coefficients: * * \(G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\) * * where \(i=0..\texttt{ksize}-1\) and \(\alpha\) is the scale factor chosen so that \(\sum_i G_i=1\). * * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. * You may also use the higher-level GaussianBlur. * param ksize Aperture size. It should be odd ( \(\texttt{ksize} \mod 2 = 1\) ) and positive. * param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as * {code sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8}. * param ktype Type of filter coefficients. It can be CV_32F or CV_64F . * SEE: sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur * return automatically generated */ public static Mat getGaussianKernel(int ksize, double sigma, int ktype) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getGaussianKernel_10(ksize, sigma, ktype))); } /** * Returns Gaussian filter coefficients. * * The function computes and returns the \(\texttt{ksize} \times 1\) matrix of Gaussian filter * coefficients: * * \(G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\) * * where \(i=0..\texttt{ksize}-1\) and \(\alpha\) is the scale factor chosen so that \(\sum_i G_i=1\). * * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. * You may also use the higher-level GaussianBlur. * param ksize Aperture size. It should be odd ( \(\texttt{ksize} \mod 2 = 1\) ) and positive. * param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as * {code sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8}. * SEE: sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur * return automatically generated */ public static Mat getGaussianKernel(int ksize, double sigma) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getGaussianKernel_11(ksize, sigma))); } // // C++: void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) // /** * Returns filter coefficients for computing spatial image derivatives. * * The function computes and returns the filter coefficients for spatial image derivatives. When * {code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to * * param kx Output matrix of row filter coefficients. It has the type ktype . * param ky Output matrix of column filter coefficients. It has the type ktype . * param dx Derivative order in respect of x. * param dy Derivative order in respect of y. * param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. * param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are * going to filter floating-point images, you are likely to use the normalized kernels. But if you * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve * all the fractional bits, you may want to set normalize=false . * param ktype Type of filter coefficients. It can be CV_32f or CV_64F . */ public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, bool normalize, int ktype) { if (kx != null) kx.ThrowIfDisposed(); if (ky != null) ky.ThrowIfDisposed(); imgproc_Imgproc_getDerivKernels_10(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize, ktype); } /** * Returns filter coefficients for computing spatial image derivatives. * * The function computes and returns the filter coefficients for spatial image derivatives. When * {code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to * * param kx Output matrix of row filter coefficients. It has the type ktype . * param ky Output matrix of column filter coefficients. It has the type ktype . * param dx Derivative order in respect of x. * param dy Derivative order in respect of y. * param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. * param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are * going to filter floating-point images, you are likely to use the normalized kernels. But if you * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve * all the fractional bits, you may want to set normalize=false . */ public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize, bool normalize) { if (kx != null) kx.ThrowIfDisposed(); if (ky != null) ky.ThrowIfDisposed(); imgproc_Imgproc_getDerivKernels_11(kx.nativeObj, ky.nativeObj, dx, dy, ksize, normalize); } /** * Returns filter coefficients for computing spatial image derivatives. * * The function computes and returns the filter coefficients for spatial image derivatives. When * {code ksize=FILTER_SCHARR}, the Scharr \(3 \times 3\) kernels are generated (see #Scharr). Otherwise, Sobel * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to * * param kx Output matrix of row filter coefficients. It has the type ktype . * param ky Output matrix of column filter coefficients. It has the type ktype . * param dx Derivative order in respect of x. * param dy Derivative order in respect of y. * param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7. * Theoretically, the coefficients should have the denominator \(=2^{ksize*2-dx-dy-2}\). If you are * going to filter floating-point images, you are likely to use the normalized kernels. But if you * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve * all the fractional bits, you may want to set normalize=false . */ public static void getDerivKernels(Mat kx, Mat ky, int dx, int dy, int ksize) { if (kx != null) kx.ThrowIfDisposed(); if (ky != null) ky.ThrowIfDisposed(); imgproc_Imgproc_getDerivKernels_12(kx.nativeObj, ky.nativeObj, dx, dy, ksize); } // // C++: Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) // /** * Returns Gabor filter coefficients. * * For more details about gabor filter equations and parameters, see: [Gabor * Filter](http://en.wikipedia.org/wiki/Gabor_filter). * * param ksize Size of the filter returned. * param sigma Standard deviation of the gaussian envelope. * param theta Orientation of the normal to the parallel stripes of a Gabor function. * param lambd Wavelength of the sinusoidal factor. * param gamma Spatial aspect ratio. * param psi Phase offset. * param ktype Type of filter coefficients. It can be CV_32F or CV_64F . * return automatically generated */ public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi, int ktype) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getGaborKernel_10(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi, ktype))); } /** * Returns Gabor filter coefficients. * * For more details about gabor filter equations and parameters, see: [Gabor * Filter](http://en.wikipedia.org/wiki/Gabor_filter). * * param ksize Size of the filter returned. * param sigma Standard deviation of the gaussian envelope. * param theta Orientation of the normal to the parallel stripes of a Gabor function. * param lambd Wavelength of the sinusoidal factor. * param gamma Spatial aspect ratio. * param psi Phase offset. * return automatically generated */ public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getGaborKernel_11(ksize.width, ksize.height, sigma, theta, lambd, gamma, psi))); } /** * Returns Gabor filter coefficients. * * For more details about gabor filter equations and parameters, see: [Gabor * Filter](http://en.wikipedia.org/wiki/Gabor_filter). * * param ksize Size of the filter returned. * param sigma Standard deviation of the gaussian envelope. * param theta Orientation of the normal to the parallel stripes of a Gabor function. * param lambd Wavelength of the sinusoidal factor. * param gamma Spatial aspect ratio. * return automatically generated */ public static Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getGaborKernel_12(ksize.width, ksize.height, sigma, theta, lambd, gamma))); } // // C++: Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) // /** * Returns a structuring element of the specified size and shape for morphological operations. * * The function constructs and returns the structuring element that can be further passed to #erode, * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as * the structuring element. * * param shape Element shape that could be one of #MorphShapes * param ksize Size of the structuring element. * param anchor Anchor position within the element. The default value \((-1, -1)\) means that the * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor * position. In other cases the anchor just regulates how much the result of the morphological * operation is shifted. * return automatically generated */ public static Mat getStructuringElement(int shape, Size ksize, Point anchor) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getStructuringElement_10(shape, ksize.width, ksize.height, anchor.x, anchor.y))); } /** * Returns a structuring element of the specified size and shape for morphological operations. * * The function constructs and returns the structuring element that can be further passed to #erode, * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as * the structuring element. * * param shape Element shape that could be one of #MorphShapes * param ksize Size of the structuring element. * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor * position. In other cases the anchor just regulates how much the result of the morphological * operation is shifted. * return automatically generated */ public static Mat getStructuringElement(int shape, Size ksize) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getStructuringElement_11(shape, ksize.width, ksize.height))); } // // C++: void cv::medianBlur(Mat src, Mat& dst, int ksize) // /** * Blurs an image using the median filter. * * The function smoothes an image using the median filter with the \(\texttt{ksize} \times * \texttt{ksize}\) aperture. Each channel of a multi-channel image is processed independently. * In-place operation is supported. * * Note: The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes * * param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be * CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. * param dst destination array of the same size and type as src. * param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... * SEE: bilateralFilter, blur, boxFilter, GaussianBlur */ public static void medianBlur(Mat src, Mat dst, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_medianBlur_10(src.nativeObj, dst.nativeObj, ksize); } // // C++: void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) // /** * Blurs an image using a Gaussian filter. * * The function convolves the source image with the specified Gaussian kernel. In-place filtering is * supported. * * param src input image; the image can have any number of channels, which are processed * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be * positive and odd. Or, they can be zero's and then they are computed from sigma. * param sigmaX Gaussian kernel standard deviation in X direction. * param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, * respectively (see #getGaussianKernel for details); to fully control the result regardless of * possible future modifications of all this semantics, it is recommended to specify all of ksize, * sigmaX, and sigmaY. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * * SEE: sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_GaussianBlur_10(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY, borderType); } /** * Blurs an image using a Gaussian filter. * * The function convolves the source image with the specified Gaussian kernel. In-place filtering is * supported. * * param src input image; the image can have any number of channels, which are processed * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be * positive and odd. Or, they can be zero's and then they are computed from sigma. * param sigmaX Gaussian kernel standard deviation in X direction. * param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, * respectively (see #getGaussianKernel for details); to fully control the result regardless of * possible future modifications of all this semantics, it is recommended to specify all of ksize, * sigmaX, and sigmaY. * * SEE: sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX, double sigmaY) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_GaussianBlur_11(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX, sigmaY); } /** * Blurs an image using a Gaussian filter. * * The function convolves the source image with the specified Gaussian kernel. In-place filtering is * supported. * * param src input image; the image can have any number of channels, which are processed * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be * positive and odd. Or, they can be zero's and then they are computed from sigma. * param sigmaX Gaussian kernel standard deviation in X direction. * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, * respectively (see #getGaussianKernel for details); to fully control the result regardless of * possible future modifications of all this semantics, it is recommended to specify all of ksize, * sigmaX, and sigmaY. * * SEE: sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur */ public static void GaussianBlur(Mat src, Mat dst, Size ksize, double sigmaX) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_GaussianBlur_12(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, sigmaX); } // // C++: void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) // /** * Applies the bilateral filter to an image. * * The function applies bilateral filtering to the input image, as described in * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is * very slow compared to most filters. * * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (< * 10), the filter will not have much effect, whereas if they are large (> 150), they will have a very * strong effect, making the image look "cartoonish". * * _Filter size_: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time * applications, and perhaps d=9 for offline applications that need heavy noise filtering. * * This filter does not work inplace. * param src Source 8-bit or floating-point, 1-channel or 3-channel image. * param dst Destination image of the same size and type as src . * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, * it is computed from sigmaSpace. * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting * in larger areas of semi-equal color. * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that * farther pixels will influence each other as long as their colors are close enough (see sigmaColor * ). When d>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is * proportional to sigmaSpace. * param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes */ public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_bilateralFilter_10(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace, borderType); } /** * Applies the bilateral filter to an image. * * The function applies bilateral filtering to the input image, as described in * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is * very slow compared to most filters. * * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (< * 10), the filter will not have much effect, whereas if they are large (> 150), they will have a very * strong effect, making the image look "cartoonish". * * _Filter size_: Large filters (d > 5) are very slow, so it is recommended to use d=5 for real-time * applications, and perhaps d=9 for offline applications that need heavy noise filtering. * * This filter does not work inplace. * param src Source 8-bit or floating-point, 1-channel or 3-channel image. * param dst Destination image of the same size and type as src . * param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, * it is computed from sigmaSpace. * param sigmaColor Filter sigma in the color space. A larger value of the parameter means that * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting * in larger areas of semi-equal color. * param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that * farther pixels will influence each other as long as their colors are close enough (see sigmaColor * ). When d>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is * proportional to sigmaSpace. */ public static void bilateralFilter(Mat src, Mat dst, int d, double sigmaColor, double sigmaSpace) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_bilateralFilter_11(src.nativeObj, dst.nativeObj, d, sigmaColor, sigmaSpace); } // // C++: void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) // /** * Blurs an image using the box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\) * * where * * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\) * * Unnormalized box filter is useful for computing various integral characteristics over each pixel * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. * * param src input image. * param dst output image of the same size and type as src. * param ddepth the output image depth (-1 to use src.depth()). * param ksize blurring kernel size. * param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel * center. * param normalize flag, specifying whether the kernel is normalized by its area or not. * param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: blur, bilateralFilter, GaussianBlur, medianBlur, integral */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, bool normalize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_boxFilter_10(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); } /** * Blurs an image using the box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\) * * where * * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\) * * Unnormalized box filter is useful for computing various integral characteristics over each pixel * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. * * param src input image. * param dst output image of the same size and type as src. * param ddepth the output image depth (-1 to use src.depth()). * param ksize blurring kernel size. * param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel * center. * param normalize flag, specifying whether the kernel is normalized by its area or not. * SEE: blur, bilateralFilter, GaussianBlur, medianBlur, integral */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, bool normalize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_boxFilter_11(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize); } /** * Blurs an image using the box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\) * * where * * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\) * * Unnormalized box filter is useful for computing various integral characteristics over each pixel * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. * * param src input image. * param dst output image of the same size and type as src. * param ddepth the output image depth (-1 to use src.depth()). * param ksize blurring kernel size. * param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel * center. * SEE: blur, bilateralFilter, GaussianBlur, medianBlur, integral */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_boxFilter_12(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y); } /** * Blurs an image using the box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\) * * where * * \(\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}\) * * Unnormalized box filter is useful for computing various integral characteristics over each pixel * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral. * * param src input image. * param dst output image of the same size and type as src. * param ddepth the output image depth (-1 to use src.depth()). * param ksize blurring kernel size. * center. * SEE: blur, bilateralFilter, GaussianBlur, medianBlur, integral */ public static void boxFilter(Mat src, Mat dst, int ddepth, Size ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_boxFilter_13(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height); } // // C++: void cv::sqrBoxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT) // /** * Calculates the normalized sum of squares of the pixel values overlapping the filter. * * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring * pixel values which overlap the filter placed over the pixel \( (x, y) \). * * The unnormalized square box filter can be useful in computing local image statistics such as the local * variance and standard deviation around the neighborhood of a pixel. * * param src input image * param dst output image of the same size and type as src * param ddepth the output image depth (-1 to use src.depth()) * param ksize kernel size * param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel * center. * param normalize flag, specifying whether the kernel is to be normalized by it's area or not. * param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: boxFilter */ public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, bool normalize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_sqrBoxFilter_10(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize, borderType); } /** * Calculates the normalized sum of squares of the pixel values overlapping the filter. * * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring * pixel values which overlap the filter placed over the pixel \( (x, y) \). * * The unnormalized square box filter can be useful in computing local image statistics such as the local * variance and standard deviation around the neighborhood of a pixel. * * param src input image * param dst output image of the same size and type as src * param ddepth the output image depth (-1 to use src.depth()) * param ksize kernel size * param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel * center. * param normalize flag, specifying whether the kernel is to be normalized by it's area or not. * SEE: boxFilter */ public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor, bool normalize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_sqrBoxFilter_11(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y, normalize); } /** * Calculates the normalized sum of squares of the pixel values overlapping the filter. * * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring * pixel values which overlap the filter placed over the pixel \( (x, y) \). * * The unnormalized square box filter can be useful in computing local image statistics such as the local * variance and standard deviation around the neighborhood of a pixel. * * param src input image * param dst output image of the same size and type as src * param ddepth the output image depth (-1 to use src.depth()) * param ksize kernel size * param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel * center. * SEE: boxFilter */ public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_sqrBoxFilter_12(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height, anchor.x, anchor.y); } /** * Calculates the normalized sum of squares of the pixel values overlapping the filter. * * For every pixel \( (x, y) \) in the source image, the function calculates the sum of squares of those neighboring * pixel values which overlap the filter placed over the pixel \( (x, y) \). * * The unnormalized square box filter can be useful in computing local image statistics such as the local * variance and standard deviation around the neighborhood of a pixel. * * param src input image * param dst output image of the same size and type as src * param ddepth the output image depth (-1 to use src.depth()) * param ksize kernel size * center. * SEE: boxFilter */ public static void sqrBoxFilter(Mat src, Mat dst, int ddepth, Size ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_sqrBoxFilter_13(src.nativeObj, dst.nativeObj, ddepth, ksize.width, ksize.height); } // // C++: void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) // /** * Blurs an image using the normalized box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\) * * The call {code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize, * anchor, true, borderType)`. * * param src input image; it can have any number of channels, which are processed independently, but * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize blurring kernel size. * param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel * center. * param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: boxFilter, bilateralFilter, GaussianBlur, medianBlur */ public static void blur(Mat src, Mat dst, Size ksize, Point anchor, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_blur_10(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y, borderType); } /** * Blurs an image using the normalized box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\) * * The call {code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize, * anchor, true, borderType)`. * * param src input image; it can have any number of channels, which are processed independently, but * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize blurring kernel size. * param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel * center. * SEE: boxFilter, bilateralFilter, GaussianBlur, medianBlur */ public static void blur(Mat src, Mat dst, Size ksize, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_blur_11(src.nativeObj, dst.nativeObj, ksize.width, ksize.height, anchor.x, anchor.y); } /** * Blurs an image using the normalized box filter. * * The function smooths an image using the kernel: * * \(\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\) * * The call {code blur(src, dst, ksize, anchor, borderType)} is equivalent to `boxFilter(src, dst, src.type(), ksize, * anchor, true, borderType)`. * * param src input image; it can have any number of channels, which are processed independently, but * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param ksize blurring kernel size. * center. * SEE: boxFilter, bilateralFilter, GaussianBlur, medianBlur */ public static void blur(Mat src, Mat dst, Size ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_blur_12(src.nativeObj, dst.nativeObj, ksize.width, ksize.height); } // // C++: void cv::stackBlur(Mat src, Mat& dst, Size ksize) // /** * Blurs an image using the stackBlur. * * The function applies and stackBlur to an image. * stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size. * It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side * of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one, * depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE. * Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004. * * param src input image. The number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S or CV_32F. * param dst output image of the same size and type as src. * param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be * positive and odd. */ public static void stackBlur(Mat src, Mat dst, Size ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_stackBlur_10(src.nativeObj, dst.nativeObj, ksize.width, ksize.height); } // // C++: void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) // /** * Convolves an image with the kernel. * * The function applies an arbitrary linear filter to an image. In-place operation is supported. When * the aperture is partially outside the image, the function interpolates outlier pixel values * according to the specified border mode. * * The function does actually compute correlation, not the convolution: * * \(\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\) * * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - * anchor.y - 1)`. * * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{code 11 x 11} or * larger) and the direct algorithm for small kernels. * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth desired depth of the destination image, see REF: filter_depths "combinations" * param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point * matrix; if you want to apply different kernels to different channels, split the image into * separate color planes using split and process them individually. * param anchor anchor of the kernel that indicates the relative position of a filtered point within * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor * is at the kernel center. * param delta optional value added to the filtered pixels before storing them in dst. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: sepFilter2D, dft, matchTemplate */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_filter2D_10(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta, borderType); } /** * Convolves an image with the kernel. * * The function applies an arbitrary linear filter to an image. In-place operation is supported. When * the aperture is partially outside the image, the function interpolates outlier pixel values * according to the specified border mode. * * The function does actually compute correlation, not the convolution: * * \(\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\) * * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - * anchor.y - 1)`. * * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{code 11 x 11} or * larger) and the direct algorithm for small kernels. * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth desired depth of the destination image, see REF: filter_depths "combinations" * param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point * matrix; if you want to apply different kernels to different channels, split the image into * separate color planes using split and process them individually. * param anchor anchor of the kernel that indicates the relative position of a filtered point within * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor * is at the kernel center. * param delta optional value added to the filtered pixels before storing them in dst. * SEE: sepFilter2D, dft, matchTemplate */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor, double delta) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_filter2D_11(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y, delta); } /** * Convolves an image with the kernel. * * The function applies an arbitrary linear filter to an image. In-place operation is supported. When * the aperture is partially outside the image, the function interpolates outlier pixel values * according to the specified border mode. * * The function does actually compute correlation, not the convolution: * * \(\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\) * * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - * anchor.y - 1)`. * * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{code 11 x 11} or * larger) and the direct algorithm for small kernels. * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth desired depth of the destination image, see REF: filter_depths "combinations" * param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point * matrix; if you want to apply different kernels to different channels, split the image into * separate color planes using split and process them individually. * param anchor anchor of the kernel that indicates the relative position of a filtered point within * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor * is at the kernel center. * SEE: sepFilter2D, dft, matchTemplate */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_filter2D_12(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj, anchor.x, anchor.y); } /** * Convolves an image with the kernel. * * The function applies an arbitrary linear filter to an image. In-place operation is supported. When * the aperture is partially outside the image, the function interpolates outlier pixel values * according to the specified border mode. * * The function does actually compute correlation, not the convolution: * * \(\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\) * * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - * anchor.y - 1)`. * * The function uses the DFT-based algorithm in case of sufficiently large kernels (~{code 11 x 11} or * larger) and the direct algorithm for small kernels. * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth desired depth of the destination image, see REF: filter_depths "combinations" * param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point * matrix; if you want to apply different kernels to different channels, split the image into * separate color planes using split and process them individually. * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor * is at the kernel center. * SEE: sepFilter2D, dft, matchTemplate */ public static void filter2D(Mat src, Mat dst, int ddepth, Mat kernel) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_filter2D_13(src.nativeObj, dst.nativeObj, ddepth, kernel.nativeObj); } // // C++: void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) // /** * Applies a separable linear filter to an image. * * The function applies a separable linear filter to the image. That is, first, every row of src is * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D * kernel kernelY. The final result shifted by delta is stored in dst . * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Destination image depth, see REF: filter_depths "combinations" * param kernelX Coefficients for filtering each row. * param kernelY Coefficients for filtering each column. * param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor * is at the kernel center. * param delta Value added to the filtered results before storing them. * param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: filter2D, Sobel, GaussianBlur, boxFilter, blur */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernelX != null) kernelX.ThrowIfDisposed(); if (kernelY != null) kernelY.ThrowIfDisposed(); imgproc_Imgproc_sepFilter2D_10(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta, borderType); } /** * Applies a separable linear filter to an image. * * The function applies a separable linear filter to the image. That is, first, every row of src is * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D * kernel kernelY. The final result shifted by delta is stored in dst . * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Destination image depth, see REF: filter_depths "combinations" * param kernelX Coefficients for filtering each row. * param kernelY Coefficients for filtering each column. * param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor * is at the kernel center. * param delta Value added to the filtered results before storing them. * SEE: filter2D, Sobel, GaussianBlur, boxFilter, blur */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor, double delta) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernelX != null) kernelX.ThrowIfDisposed(); if (kernelY != null) kernelY.ThrowIfDisposed(); imgproc_Imgproc_sepFilter2D_11(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y, delta); } /** * Applies a separable linear filter to an image. * * The function applies a separable linear filter to the image. That is, first, every row of src is * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D * kernel kernelY. The final result shifted by delta is stored in dst . * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Destination image depth, see REF: filter_depths "combinations" * param kernelX Coefficients for filtering each row. * param kernelY Coefficients for filtering each column. * param anchor Anchor position within the kernel. The default value \((-1,-1)\) means that the anchor * is at the kernel center. * SEE: filter2D, Sobel, GaussianBlur, boxFilter, blur */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernelX != null) kernelX.ThrowIfDisposed(); if (kernelY != null) kernelY.ThrowIfDisposed(); imgproc_Imgproc_sepFilter2D_12(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj, anchor.x, anchor.y); } /** * Applies a separable linear filter to an image. * * The function applies a separable linear filter to the image. That is, first, every row of src is * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D * kernel kernelY. The final result shifted by delta is stored in dst . * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Destination image depth, see REF: filter_depths "combinations" * param kernelX Coefficients for filtering each row. * param kernelY Coefficients for filtering each column. * is at the kernel center. * SEE: filter2D, Sobel, GaussianBlur, boxFilter, blur */ public static void sepFilter2D(Mat src, Mat dst, int ddepth, Mat kernelX, Mat kernelY) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernelX != null) kernelX.ThrowIfDisposed(); if (kernelY != null) kernelY.ThrowIfDisposed(); imgproc_Imgproc_sepFilter2D_13(src.nativeObj, dst.nativeObj, ddepth, kernelX.nativeObj, kernelY.nativeObj); } // // C++: void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. * * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\) * kernel is used (that is, no Gaussian smoothing is done). {code ksize = 1} can only be used for the first * or the second x- or y- derivatives. * * There is also the special value {code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is * * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\) * * for the x-derivative, or transposed for the y-derivative. * * The function calculates an image derivative by convolving the image with the appropriate kernel: * * \(\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\) * * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first * case corresponds to a kernel of: * * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\) * * The second case corresponds to a kernel of: * * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\) * * param src input image. * param dst output image of the same size and the same number of channels as src . * param ddepth output image depth, see REF: filter_depths "combinations"; in the case of * 8-bit input images it will result in truncated derivatives. * param dx order of the derivative x. * param dy order of the derivative y. * param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * param delta optional delta value that is added to the results prior to storing them in dst. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Sobel_10(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta, borderType); } /** * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. * * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\) * kernel is used (that is, no Gaussian smoothing is done). {code ksize = 1} can only be used for the first * or the second x- or y- derivatives. * * There is also the special value {code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is * * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\) * * for the x-derivative, or transposed for the y-derivative. * * The function calculates an image derivative by convolving the image with the appropriate kernel: * * \(\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\) * * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first * case corresponds to a kernel of: * * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\) * * The second case corresponds to a kernel of: * * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\) * * param src input image. * param dst output image of the same size and the same number of channels as src . * param ddepth output image depth, see REF: filter_depths "combinations"; in the case of * 8-bit input images it will result in truncated derivatives. * param dx order of the derivative x. * param dy order of the derivative y. * param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * param delta optional delta value that is added to the results prior to storing them in dst. * SEE: Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale, double delta) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Sobel_11(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale, delta); } /** * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. * * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\) * kernel is used (that is, no Gaussian smoothing is done). {code ksize = 1} can only be used for the first * or the second x- or y- derivatives. * * There is also the special value {code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is * * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\) * * for the x-derivative, or transposed for the y-derivative. * * The function calculates an image derivative by convolving the image with the appropriate kernel: * * \(\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\) * * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first * case corresponds to a kernel of: * * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\) * * The second case corresponds to a kernel of: * * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\) * * param src input image. * param dst output image of the same size and the same number of channels as src . * param ddepth output image depth, see REF: filter_depths "combinations"; in the case of * 8-bit input images it will result in truncated derivatives. * param dx order of the derivative x. * param dy order of the derivative y. * param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * SEE: Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize, double scale) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Sobel_12(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize, scale); } /** * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. * * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\) * kernel is used (that is, no Gaussian smoothing is done). {code ksize = 1} can only be used for the first * or the second x- or y- derivatives. * * There is also the special value {code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is * * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\) * * for the x-derivative, or transposed for the y-derivative. * * The function calculates an image derivative by convolving the image with the appropriate kernel: * * \(\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\) * * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first * case corresponds to a kernel of: * * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\) * * The second case corresponds to a kernel of: * * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\) * * param src input image. * param dst output image of the same size and the same number of channels as src . * param ddepth output image depth, see REF: filter_depths "combinations"; in the case of * 8-bit input images it will result in truncated derivatives. * param dx order of the derivative x. * param dy order of the derivative y. * param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. * applied (see #getDerivKernels for details). * SEE: Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Sobel_13(src.nativeObj, dst.nativeObj, ddepth, dx, dy, ksize); } /** * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. * * In all cases except one, the \(\texttt{ksize} \times \texttt{ksize}\) separable kernel is used to * calculate the derivative. When \(\texttt{ksize = 1}\), the \(3 \times 1\) or \(1 \times 3\) * kernel is used (that is, no Gaussian smoothing is done). {code ksize = 1} can only be used for the first * or the second x- or y- derivatives. * * There is also the special value {code ksize = #FILTER_SCHARR (-1)} that corresponds to the \(3\times3\) Scharr * filter that may give more accurate results than the \(3\times3\) Sobel. The Scharr aperture is * * \(\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\) * * for the x-derivative, or transposed for the y-derivative. * * The function calculates an image derivative by convolving the image with the appropriate kernel: * * \(\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\) * * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first * case corresponds to a kernel of: * * \(\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\) * * The second case corresponds to a kernel of: * * \(\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\) * * param src input image. * param dst output image of the same size and the same number of channels as src . * param ddepth output image depth, see REF: filter_depths "combinations"; in the case of * 8-bit input images it will result in truncated derivatives. * param dx order of the derivative x. * param dy order of the derivative y. * applied (see #getDerivKernels for details). * SEE: Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar */ public static void Sobel(Mat src, Mat dst, int ddepth, int dx, int dy) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Sobel_14(src.nativeObj, dst.nativeObj, ddepth, dx, dy); } // // C++: void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT) // /** * Calculates the first order image derivative in both x and y using a Sobel operator * * Equivalent to calling: * * * Sobel( src, dx, CV_16SC1, 1, 0, 3 ); * Sobel( src, dy, CV_16SC1, 0, 1, 3 ); * * * param src input image. * param dx output image with first-order derivative in x. * param dy output image with first-order derivative in y. * param ksize size of Sobel kernel. It must be 3. * param borderType pixel extrapolation method, see #BorderTypes. * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported. * * SEE: Sobel */ public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dx != null) dx.ThrowIfDisposed(); if (dy != null) dy.ThrowIfDisposed(); imgproc_Imgproc_spatialGradient_10(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize, borderType); } /** * Calculates the first order image derivative in both x and y using a Sobel operator * * Equivalent to calling: * * * Sobel( src, dx, CV_16SC1, 1, 0, 3 ); * Sobel( src, dy, CV_16SC1, 0, 1, 3 ); * * * param src input image. * param dx output image with first-order derivative in x. * param dy output image with first-order derivative in y. * param ksize size of Sobel kernel. It must be 3. * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported. * * SEE: Sobel */ public static void spatialGradient(Mat src, Mat dx, Mat dy, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dx != null) dx.ThrowIfDisposed(); if (dy != null) dy.ThrowIfDisposed(); imgproc_Imgproc_spatialGradient_11(src.nativeObj, dx.nativeObj, dy.nativeObj, ksize); } /** * Calculates the first order image derivative in both x and y using a Sobel operator * * Equivalent to calling: * * * Sobel( src, dx, CV_16SC1, 1, 0, 3 ); * Sobel( src, dy, CV_16SC1, 0, 1, 3 ); * * * param src input image. * param dx output image with first-order derivative in x. * param dy output image with first-order derivative in y. * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported. * * SEE: Sobel */ public static void spatialGradient(Mat src, Mat dx, Mat dy) { if (src != null) src.ThrowIfDisposed(); if (dx != null) dx.ThrowIfDisposed(); if (dy != null) dy.ThrowIfDisposed(); imgproc_Imgproc_spatialGradient_12(src.nativeObj, dx.nativeObj, dy.nativeObj); } // // C++: void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** * Calculates the first x- or y- image derivative using Scharr operator. * * The function computes the first x- or y- spatial image derivative using the Scharr operator. The * call * * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\) * * is equivalent to * * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\) * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth output image depth, see REF: filter_depths "combinations" * param dx order of the derivative x. * param dy order of the derivative y. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * param delta optional delta value that is added to the results prior to storing them in dst. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Scharr_10(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta, borderType); } /** * Calculates the first x- or y- image derivative using Scharr operator. * * The function computes the first x- or y- spatial image derivative using the Scharr operator. The * call * * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\) * * is equivalent to * * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\) * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth output image depth, see REF: filter_depths "combinations" * param dx order of the derivative x. * param dy order of the derivative y. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * param delta optional delta value that is added to the results prior to storing them in dst. * SEE: cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale, double delta) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Scharr_11(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale, delta); } /** * Calculates the first x- or y- image derivative using Scharr operator. * * The function computes the first x- or y- spatial image derivative using the Scharr operator. The * call * * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\) * * is equivalent to * * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\) * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth output image depth, see REF: filter_depths "combinations" * param dx order of the derivative x. * param dy order of the derivative y. * param scale optional scale factor for the computed derivative values; by default, no scaling is * applied (see #getDerivKernels for details). * SEE: cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy, double scale) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Scharr_12(src.nativeObj, dst.nativeObj, ddepth, dx, dy, scale); } /** * Calculates the first x- or y- image derivative using Scharr operator. * * The function computes the first x- or y- spatial image derivative using the Scharr operator. The * call * * \(\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\) * * is equivalent to * * \(\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\) * * param src input image. * param dst output image of the same size and the same number of channels as src. * param ddepth output image depth, see REF: filter_depths "combinations" * param dx order of the derivative x. * param dy order of the derivative y. * applied (see #getDerivKernels for details). * SEE: cartToPolar */ public static void Scharr(Mat src, Mat dst, int ddepth, int dx, int dy) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Scharr_13(src.nativeObj, dst.nativeObj, ddepth, dx, dy); } // // C++: void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) // /** * Calculates the Laplacian of an image. * * The function calculates the Laplacian of the source image by adding up the second x and y * derivatives calculated using the Sobel operator: * * \(\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\) * * This is done when {code ksize > 1}. When {code ksize == 1}, the Laplacian is computed by filtering the image * with the following \(3 \times 3\) aperture: * * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\) * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Desired depth of the destination image, see REF: filter_depths "combinations". * param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for * details. The size must be positive and odd. * param scale Optional scale factor for the computed Laplacian values. By default, no scaling is * applied. See #getDerivKernels for details. * param delta Optional delta value that is added to the results prior to storing them in dst . * param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: Sobel, Scharr */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Laplacian_10(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta, borderType); } /** * Calculates the Laplacian of an image. * * The function calculates the Laplacian of the source image by adding up the second x and y * derivatives calculated using the Sobel operator: * * \(\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\) * * This is done when {code ksize > 1}. When {code ksize == 1}, the Laplacian is computed by filtering the image * with the following \(3 \times 3\) aperture: * * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\) * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Desired depth of the destination image, see REF: filter_depths "combinations". * param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for * details. The size must be positive and odd. * param scale Optional scale factor for the computed Laplacian values. By default, no scaling is * applied. See #getDerivKernels for details. * param delta Optional delta value that is added to the results prior to storing them in dst . * SEE: Sobel, Scharr */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale, double delta) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Laplacian_11(src.nativeObj, dst.nativeObj, ddepth, ksize, scale, delta); } /** * Calculates the Laplacian of an image. * * The function calculates the Laplacian of the source image by adding up the second x and y * derivatives calculated using the Sobel operator: * * \(\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\) * * This is done when {code ksize > 1}. When {code ksize == 1}, the Laplacian is computed by filtering the image * with the following \(3 \times 3\) aperture: * * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\) * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Desired depth of the destination image, see REF: filter_depths "combinations". * param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for * details. The size must be positive and odd. * param scale Optional scale factor for the computed Laplacian values. By default, no scaling is * applied. See #getDerivKernels for details. * SEE: Sobel, Scharr */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize, double scale) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Laplacian_12(src.nativeObj, dst.nativeObj, ddepth, ksize, scale); } /** * Calculates the Laplacian of an image. * * The function calculates the Laplacian of the source image by adding up the second x and y * derivatives calculated using the Sobel operator: * * \(\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\) * * This is done when {code ksize > 1}. When {code ksize == 1}, the Laplacian is computed by filtering the image * with the following \(3 \times 3\) aperture: * * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\) * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Desired depth of the destination image, see REF: filter_depths "combinations". * param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for * details. The size must be positive and odd. * applied. See #getDerivKernels for details. * SEE: Sobel, Scharr */ public static void Laplacian(Mat src, Mat dst, int ddepth, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Laplacian_13(src.nativeObj, dst.nativeObj, ddepth, ksize); } /** * Calculates the Laplacian of an image. * * The function calculates the Laplacian of the source image by adding up the second x and y * derivatives calculated using the Sobel operator: * * \(\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\) * * This is done when {code ksize > 1}. When {code ksize == 1}, the Laplacian is computed by filtering the image * with the following \(3 \times 3\) aperture: * * \(\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\) * * param src Source image. * param dst Destination image of the same size and the same number of channels as src . * param ddepth Desired depth of the destination image, see REF: filter_depths "combinations". * details. The size must be positive and odd. * applied. See #getDerivKernels for details. * SEE: Sobel, Scharr */ public static void Laplacian(Mat src, Mat dst, int ddepth) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_Laplacian_14(src.nativeObj, dst.nativeObj, ddepth); } // // C++: void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) // /** * Finds edges in an image using the Canny algorithm CITE: Canny86 . * * The function finds edges in the input image and marks them in the output map edges using the * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The * largest value is used to find initial segments of strong edges. See * <http://en.wikipedia.org/wiki/Canny_edge_detector> * * param image 8-bit input image. * param edges output edge map; single channels 8-bit image, which has the same size as image . * param threshold1 first threshold for the hysteresis procedure. * param threshold2 second threshold for the hysteresis procedure. * param apertureSize aperture size for the Sobel operator. * param L2gradient a flag, indicating whether a more accurate \(L_2\) norm * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude ( * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( * L2gradient=false ). */ public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize, bool L2gradient) { if (image != null) image.ThrowIfDisposed(); if (edges != null) edges.ThrowIfDisposed(); imgproc_Imgproc_Canny_10(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize, L2gradient); } /** * Finds edges in an image using the Canny algorithm CITE: Canny86 . * * The function finds edges in the input image and marks them in the output map edges using the * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The * largest value is used to find initial segments of strong edges. See * <http://en.wikipedia.org/wiki/Canny_edge_detector> * * param image 8-bit input image. * param edges output edge map; single channels 8-bit image, which has the same size as image . * param threshold1 first threshold for the hysteresis procedure. * param threshold2 second threshold for the hysteresis procedure. * param apertureSize aperture size for the Sobel operator. * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude ( * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( * L2gradient=false ). */ public static void Canny(Mat image, Mat edges, double threshold1, double threshold2, int apertureSize) { if (image != null) image.ThrowIfDisposed(); if (edges != null) edges.ThrowIfDisposed(); imgproc_Imgproc_Canny_11(image.nativeObj, edges.nativeObj, threshold1, threshold2, apertureSize); } /** * Finds edges in an image using the Canny algorithm CITE: Canny86 . * * The function finds edges in the input image and marks them in the output map edges using the * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The * largest value is used to find initial segments of strong edges. See * <http://en.wikipedia.org/wiki/Canny_edge_detector> * * param image 8-bit input image. * param edges output edge map; single channels 8-bit image, which has the same size as image . * param threshold1 first threshold for the hysteresis procedure. * param threshold2 second threshold for the hysteresis procedure. * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude ( * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( * L2gradient=false ). */ public static void Canny(Mat image, Mat edges, double threshold1, double threshold2) { if (image != null) image.ThrowIfDisposed(); if (edges != null) edges.ThrowIfDisposed(); imgproc_Imgproc_Canny_12(image.nativeObj, edges.nativeObj, threshold1, threshold2); } // // C++: void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false) // /** * \overload * * Finds edges in an image using the Canny algorithm with custom image gradient. * * param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). * param dy 16-bit y derivative of input image (same type as dx). * param edges output edge map; single channels 8-bit image, which has the same size as image . * param threshold1 first threshold for the hysteresis procedure. * param threshold2 second threshold for the hysteresis procedure. * param L2gradient a flag, indicating whether a more accurate \(L_2\) norm * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude ( * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( * L2gradient=false ). */ public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2, bool L2gradient) { if (dx != null) dx.ThrowIfDisposed(); if (dy != null) dy.ThrowIfDisposed(); if (edges != null) edges.ThrowIfDisposed(); imgproc_Imgproc_Canny_13(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2, L2gradient); } /** * \overload * * Finds edges in an image using the Canny algorithm with custom image gradient. * * param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). * param dy 16-bit y derivative of input image (same type as dx). * param edges output edge map; single channels 8-bit image, which has the same size as image . * param threshold1 first threshold for the hysteresis procedure. * param threshold2 second threshold for the hysteresis procedure. * \(=\sqrt{(dI/dx)^2 + (dI/dy)^2}\) should be used to calculate the image gradient magnitude ( * L2gradient=true ), or whether the default \(L_1\) norm \(=|dI/dx|+|dI/dy|\) is enough ( * L2gradient=false ). */ public static void Canny(Mat dx, Mat dy, Mat edges, double threshold1, double threshold2) { if (dx != null) dx.ThrowIfDisposed(); if (dy != null) dy.ThrowIfDisposed(); if (edges != null) edges.ThrowIfDisposed(); imgproc_Imgproc_Canny_14(dx.nativeObj, dy.nativeObj, edges.nativeObj, threshold1, threshold2); } // // C++: void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) // /** * Calculates the minimal eigenvalue of gradient matrices for corner detection. * * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms * of the formulae in the cornerEigenValsAndVecs description. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as * src . * param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). * param ksize Aperture parameter for the Sobel operator. * param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerMinEigenVal_10(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); } /** * Calculates the minimal eigenvalue of gradient matrices for corner detection. * * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms * of the formulae in the cornerEigenValsAndVecs description. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as * src . * param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). * param ksize Aperture parameter for the Sobel operator. */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerMinEigenVal_11(src.nativeObj, dst.nativeObj, blockSize, ksize); } /** * Calculates the minimal eigenvalue of gradient matrices for corner detection. * * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal * eigenvalue of the covariance matrix of derivatives, that is, \(\min(\lambda_1, \lambda_2)\) in terms * of the formulae in the cornerEigenValsAndVecs description. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as * src . * param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). */ public static void cornerMinEigenVal(Mat src, Mat dst, int blockSize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerMinEigenVal_12(src.nativeObj, dst.nativeObj, blockSize); } // // C++: void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) // /** * Harris corner detector. * * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and * cornerEigenValsAndVecs , for each pixel \((x, y)\) it calculates a \(2\times2\) gradient covariance * matrix \(M^{(x,y)}\) over a \(\texttt{blockSize} \times \texttt{blockSize}\) neighborhood. Then, it * computes the following characteristic: * * \(\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\) * * Corners in the image can be found as the local maxima of this response map. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same * size as src . * param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). * param ksize Aperture parameter for the Sobel operator. * param k Harris detector free parameter. See the formula above. * param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. */ public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerHarris_10(src.nativeObj, dst.nativeObj, blockSize, ksize, k, borderType); } /** * Harris corner detector. * * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and * cornerEigenValsAndVecs , for each pixel \((x, y)\) it calculates a \(2\times2\) gradient covariance * matrix \(M^{(x,y)}\) over a \(\texttt{blockSize} \times \texttt{blockSize}\) neighborhood. Then, it * computes the following characteristic: * * \(\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\) * * Corners in the image can be found as the local maxima of this response map. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same * size as src . * param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ). * param ksize Aperture parameter for the Sobel operator. * param k Harris detector free parameter. See the formula above. */ public static void cornerHarris(Mat src, Mat dst, int blockSize, int ksize, double k) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerHarris_11(src.nativeObj, dst.nativeObj, blockSize, ksize, k); } // // C++: void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) // /** * Calculates eigenvalues and eigenvectors of image blocks for corner detection. * * For every pixel \(p\) , the function cornerEigenValsAndVecs considers a blockSize \(\times\) blockSize * neighborhood \(S(p)\) . It calculates the covariation matrix of derivatives over the neighborhood as: * * \(M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\) * * where the derivatives are computed using the Sobel operator. * * After that, it finds eigenvectors and eigenvalues of \(M\) and stores them in the destination image as * \((\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\) where * * * * The output of the function can be used for robust edge or corner detection. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . * param blockSize Neighborhood size (see details below). * param ksize Aperture parameter for the Sobel operator. * param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. * * SEE: cornerMinEigenVal, cornerHarris, preCornerDetect */ public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerEigenValsAndVecs_10(src.nativeObj, dst.nativeObj, blockSize, ksize, borderType); } /** * Calculates eigenvalues and eigenvectors of image blocks for corner detection. * * For every pixel \(p\) , the function cornerEigenValsAndVecs considers a blockSize \(\times\) blockSize * neighborhood \(S(p)\) . It calculates the covariation matrix of derivatives over the neighborhood as: * * \(M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\) * * where the derivatives are computed using the Sobel operator. * * After that, it finds eigenvectors and eigenvalues of \(M\) and stores them in the destination image as * \((\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\) where * * * * The output of the function can be used for robust edge or corner detection. * * param src Input single-channel 8-bit or floating-point image. * param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . * param blockSize Neighborhood size (see details below). * param ksize Aperture parameter for the Sobel operator. * * SEE: cornerMinEigenVal, cornerHarris, preCornerDetect */ public static void cornerEigenValsAndVecs(Mat src, Mat dst, int blockSize, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cornerEigenValsAndVecs_11(src.nativeObj, dst.nativeObj, blockSize, ksize); } // // C++: void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) // /** * Calculates a feature map for corner detection. * * The function calculates the complex spatial derivative-based function of the source image * * \(\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\) * * where \(D_x\),\(D_y\) are the first image derivatives, \(D_{xx}\),\(D_{yy}\) are the second image * derivatives, and \(D_{xy}\) is the mixed derivative. * * The corners can be found as local maximums of the functions, as shown below: * * Mat corners, dilated_corners; * preCornerDetect(image, corners, 3); * // dilation with 3x3 rectangular structuring element * dilate(corners, dilated_corners, Mat(), 1); * Mat corner_mask = corners == dilated_corners; * * * param src Source single-channel 8-bit of floating-point image. * param dst Output image that has the type CV_32F and the same size as src . * param ksize %Aperture size of the Sobel . * param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported. */ public static void preCornerDetect(Mat src, Mat dst, int ksize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_preCornerDetect_10(src.nativeObj, dst.nativeObj, ksize, borderType); } /** * Calculates a feature map for corner detection. * * The function calculates the complex spatial derivative-based function of the source image * * \(\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\) * * where \(D_x\),\(D_y\) are the first image derivatives, \(D_{xx}\),\(D_{yy}\) are the second image * derivatives, and \(D_{xy}\) is the mixed derivative. * * The corners can be found as local maximums of the functions, as shown below: * * Mat corners, dilated_corners; * preCornerDetect(image, corners, 3); * // dilation with 3x3 rectangular structuring element * dilate(corners, dilated_corners, Mat(), 1); * Mat corner_mask = corners == dilated_corners; * * * param src Source single-channel 8-bit of floating-point image. * param dst Output image that has the type CV_32F and the same size as src . * param ksize %Aperture size of the Sobel . */ public static void preCornerDetect(Mat src, Mat dst, int ksize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_preCornerDetect_11(src.nativeObj, dst.nativeObj, ksize); } // // C++: void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria) // /** * Refines the corner locations. * * The function iterates to find the sub-pixel accurate location of corners or radial saddle * points as described in CITE: forstner1987fast, and as shown on the figure below. * * ![image](pics/cornersubpix.png) * * Sub-pixel accurate corner locator is based on the observation that every vector from the center \(q\) * to a point \(p\) located within a neighborhood of \(q\) is orthogonal to the image gradient at \(p\) * subject to image and measurement noise. Consider the expression: * * \(\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\) * * where \({DI_{p_i}}\) is an image gradient at one of the points \(p_i\) in a neighborhood of \(q\) . The * value of \(q\) is to be found so that \(\epsilon_i\) is minimized. A system of equations may be set up * with \(\epsilon_i\) set to zero: * * \(\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\) * * where the gradients are summed within a neighborhood ("search window") of \(q\) . Calling the first * gradient term \(G\) and the second gradient term \(b\) gives: * * \(q = G^{-1} \cdot b\) * * The algorithm sets the center of the neighborhood window at this new center \(q\) and then iterates * until the center stays within a set threshold. * * param image Input single-channel, 8-bit or float image. * param corners Initial coordinates of the input corners and refined coordinates provided for * output. * param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , * then a \((5*2+1) \times (5*2+1) = 11 \times 11\) search window is used. * param zeroZone Half of the size of the dead region in the middle of the search zone over which * the summation in the formula below is not done. It is used sometimes to avoid possible * singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such * a size. * param criteria Criteria for termination of the iterative process of corner refinement. That is, * the process of corner position refinement stops either after criteria.maxCount iterations or when * the corner position moves by less than criteria.epsilon on some iteration. */ public static void cornerSubPix(Mat image, Mat corners, Size winSize, Size zeroZone, TermCriteria criteria) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); imgproc_Imgproc_cornerSubPix_10(image.nativeObj, corners.nativeObj, winSize.width, winSize.height, zeroZone.width, zeroZone.height, criteria.type, criteria.maxCount, criteria.epsilon); } // // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) // /** * Determines strong corners on an image. * * The function finds the most prominent corners in the image or in the specified image region, as * described in CITE: Shi94 * * * * The function can be used to initialize a point-based tracker of an object. * * Note: If the function is called with different values A and B of the parameter qualityLevel , and * A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector * with qualityLevel=B . * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Optional region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) * or #cornerMinEigenVal. * param k Free parameter of the Harris detector. * * SEE: cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, bool useHarrisDetector, double k) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_10(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector, k); } /** * Determines strong corners on an image. * * The function finds the most prominent corners in the image or in the specified image region, as * described in CITE: Shi94 * * * * The function can be used to initialize a point-based tracker of an object. * * Note: If the function is called with different values A and B of the parameter qualityLevel , and * A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector * with qualityLevel=B . * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Optional region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) * or #cornerMinEigenVal. * * SEE: cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, bool useHarrisDetector) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_11(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, useHarrisDetector); } /** * Determines strong corners on an image. * * The function finds the most prominent corners in the image or in the specified image region, as * described in CITE: Shi94 * * * * The function can be used to initialize a point-based tracker of an object. * * Note: If the function is called with different values A and B of the parameter qualityLevel , and * A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector * with qualityLevel=B . * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Optional region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * or #cornerMinEigenVal. * * SEE: cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_12(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize); } /** * Determines strong corners on an image. * * The function finds the most prominent corners in the image or in the specified image region, as * described in CITE: Shi94 * * * * The function can be used to initialize a point-based tracker of an object. * * Note: If the function is called with different values A and B of the parameter qualityLevel , and * A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector * with qualityLevel=B . * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Optional region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * pixel neighborhood. See cornerEigenValsAndVecs . * or #cornerMinEigenVal. * * SEE: cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_13(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj); } /** * Determines strong corners on an image. * * The function finds the most prominent corners in the image or in the specified image region, as * described in CITE: Shi94 * * * * The function can be used to initialize a point-based tracker of an object. * * Note: If the function is called with different values A and B of the parameter qualityLevel , and * A > B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector * with qualityLevel=B . * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * pixel neighborhood. See cornerEigenValsAndVecs . * or #cornerMinEigenVal. * * SEE: cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, */ public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_14(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance); } // // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04) // public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector, double k) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_15(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector, k); } public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_16(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize, useHarrisDetector); } public static void goodFeaturesToTrack(Mat image, MatOfPoint corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); Mat corners_mat = corners; imgproc_Imgproc_goodFeaturesToTrack_17(image.nativeObj, corners_mat.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, blockSize, gradientSize); } // // C++: void cv::goodFeaturesToTrack(Mat image, Mat& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat& cornersQuality, int blockSize = 3, int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04) // /** * Same as above, but returns also quality measure of the detected corners. * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param cornersQuality Output vector of quality measure of the detected corners. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * param gradientSize Aperture parameter for the Sobel operator used for derivatives computation. * See cornerEigenValsAndVecs . * param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) * or #cornerMinEigenVal. * param k Free parameter of the Harris detector. */ public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize, bool useHarrisDetector, double k) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (cornersQuality != null) cornersQuality.ThrowIfDisposed(); imgproc_Imgproc_goodFeaturesToTrackWithQuality_10(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize, useHarrisDetector, k); } /** * Same as above, but returns also quality measure of the detected corners. * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param cornersQuality Output vector of quality measure of the detected corners. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * param gradientSize Aperture parameter for the Sobel operator used for derivatives computation. * See cornerEigenValsAndVecs . * param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris) * or #cornerMinEigenVal. */ public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize, bool useHarrisDetector) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (cornersQuality != null) cornersQuality.ThrowIfDisposed(); imgproc_Imgproc_goodFeaturesToTrackWithQuality_11(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize, useHarrisDetector); } /** * Same as above, but returns also quality measure of the detected corners. * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param cornersQuality Output vector of quality measure of the detected corners. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * param gradientSize Aperture parameter for the Sobel operator used for derivatives computation. * See cornerEigenValsAndVecs . * or #cornerMinEigenVal. */ public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize, int gradientSize) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (cornersQuality != null) cornersQuality.ThrowIfDisposed(); imgproc_Imgproc_goodFeaturesToTrackWithQuality_12(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize, gradientSize); } /** * Same as above, but returns also quality measure of the detected corners. * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param cornersQuality Output vector of quality measure of the detected corners. * param blockSize Size of an average block for computing a derivative covariation matrix over each * pixel neighborhood. See cornerEigenValsAndVecs . * See cornerEigenValsAndVecs . * or #cornerMinEigenVal. */ public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality, int blockSize) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (cornersQuality != null) cornersQuality.ThrowIfDisposed(); imgproc_Imgproc_goodFeaturesToTrackWithQuality_13(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj, blockSize); } /** * Same as above, but returns also quality measure of the detected corners. * * param image Input 8-bit or floating-point 32-bit, single-channel image. * param corners Output vector of detected corners. * param maxCorners Maximum number of corners to return. If there are more corners than are found, * the strongest of them is returned. {code maxCorners <= 0} implies that no limit on the maximum is set * and all detected corners are returned. * param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the * quality measure less than the product are rejected. For example, if the best corner has the * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure * less than 15 are rejected. * param minDistance Minimum possible Euclidean distance between the returned corners. * param mask Region of interest. If the image is not empty (it needs to have the type * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. * param cornersQuality Output vector of quality measure of the detected corners. * pixel neighborhood. See cornerEigenValsAndVecs . * See cornerEigenValsAndVecs . * or #cornerMinEigenVal. */ public static void goodFeaturesToTrackWithQuality(Mat image, Mat corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat cornersQuality) { if (image != null) image.ThrowIfDisposed(); if (corners != null) corners.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (cornersQuality != null) cornersQuality.ThrowIfDisposed(); imgproc_Imgproc_goodFeaturesToTrackWithQuality_14(image.nativeObj, corners.nativeObj, maxCorners, qualityLevel, minDistance, mask.nativeObj, cornersQuality.nativeObj); } // // C++: void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) // /** * Finds lines in a binary image using the standard Hough transform. * * The function implements the standard or standard multi-scale Hough transform algorithm for line * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough * transform. * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 2 or 3 element vector * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\), where \(\rho\) is the distance from * the coordinate origin \((0,0)\) (top-left corner of the image), \(\theta\) is the line rotation * angle in radians ( \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ), and * \(\textrm{votes}\) is the value of accumulator. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these * parameters should be positive. * param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. * param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. * Must fall between 0 and max_theta. * param max_theta For standard and multi-scale Hough transform, an upper bound for the angle. * Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly * less than max_theta, depending on the parameters min_theta and theta. */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLines_10(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta, max_theta); } /** * Finds lines in a binary image using the standard Hough transform. * * The function implements the standard or standard multi-scale Hough transform algorithm for line * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough * transform. * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 2 or 3 element vector * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\), where \(\rho\) is the distance from * the coordinate origin \((0,0)\) (top-left corner of the image), \(\theta\) is the line rotation * angle in radians ( \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ), and * \(\textrm{votes}\) is the value of accumulator. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these * parameters should be positive. * param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. * param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. * Must fall between 0 and max_theta. * Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly * less than max_theta, depending on the parameters min_theta and theta. */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLines_11(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta); } /** * Finds lines in a binary image using the standard Hough transform. * * The function implements the standard or standard multi-scale Hough transform algorithm for line * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough * transform. * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 2 or 3 element vector * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\), where \(\rho\) is the distance from * the coordinate origin \((0,0)\) (top-left corner of the image), \(\theta\) is the line rotation * angle in radians ( \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ), and * \(\textrm{votes}\) is the value of accumulator. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these * parameters should be positive. * param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. * Must fall between 0 and max_theta. * Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly * less than max_theta, depending on the parameters min_theta and theta. */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLines_12(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn); } /** * Finds lines in a binary image using the standard Hough transform. * * The function implements the standard or standard multi-scale Hough transform algorithm for line * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough * transform. * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 2 or 3 element vector * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\), where \(\rho\) is the distance from * the coordinate origin \((0,0)\) (top-left corner of the image), \(\theta\) is the line rotation * angle in radians ( \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ), and * \(\textrm{votes}\) is the value of accumulator. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho. * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these * parameters should be positive. * Must fall between 0 and max_theta. * Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly * less than max_theta, depending on the parameters min_theta and theta. */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold, double srn) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLines_13(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn); } /** * Finds lines in a binary image using the standard Hough transform. * * The function implements the standard or standard multi-scale Hough transform algorithm for line * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough * transform. * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 2 or 3 element vector * \((\rho, \theta)\) or \((\rho, \theta, \textrm{votes})\), where \(\rho\) is the distance from * the coordinate origin \((0,0)\) (top-left corner of the image), \(\theta\) is the line rotation * angle in radians ( \(0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\) ), and * \(\textrm{votes}\) is the value of accumulator. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is * rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these * parameters should be positive. * Must fall between 0 and max_theta. * Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly * less than max_theta, depending on the parameters min_theta and theta. */ public static void HoughLines(Mat image, Mat lines, double rho, double theta, int threshold) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLines_14(image.nativeObj, lines.nativeObj, rho, theta, threshold); } // // C++: void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) // /** * Finds line segments in a binary image using the probabilistic Hough transform. * * The function implements the probabilistic Hough transform algorithm for line detection, described * in CITE: Matas00 * * See the line detection example below: * INCLUDE: snippets/imgproc_HoughLinesP.cpp * This is a sample picture the function parameters have been tuned for: * * ![image](pics/building.jpg) * * And this is the output of the above program in case of the probabilistic Hough transform: * * ![image](pics/houghp.png) * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 4-element vector * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected * line segment. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param minLineLength Minimum line length. Line segments shorter than that are rejected. * param maxLineGap Maximum allowed gap between points on the same line to link them. * * SEE: LineSegmentDetector */ public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength, double maxLineGap) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesP_10(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength, maxLineGap); } /** * Finds line segments in a binary image using the probabilistic Hough transform. * * The function implements the probabilistic Hough transform algorithm for line detection, described * in CITE: Matas00 * * See the line detection example below: * INCLUDE: snippets/imgproc_HoughLinesP.cpp * This is a sample picture the function parameters have been tuned for: * * ![image](pics/building.jpg) * * And this is the output of the above program in case of the probabilistic Hough transform: * * ![image](pics/houghp.png) * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 4-element vector * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected * line segment. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param minLineLength Minimum line length. Line segments shorter than that are rejected. * * SEE: LineSegmentDetector */ public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold, double minLineLength) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesP_11(image.nativeObj, lines.nativeObj, rho, theta, threshold, minLineLength); } /** * Finds line segments in a binary image using the probabilistic Hough transform. * * The function implements the probabilistic Hough transform algorithm for line detection, described * in CITE: Matas00 * * See the line detection example below: * INCLUDE: snippets/imgproc_HoughLinesP.cpp * This is a sample picture the function parameters have been tuned for: * * ![image](pics/building.jpg) * * And this is the output of the above program in case of the probabilistic Hough transform: * * ![image](pics/houghp.png) * * param image 8-bit, single-channel binary source image. The image may be modified by the function. * param lines Output vector of lines. Each line is represented by a 4-element vector * \((x_1, y_1, x_2, y_2)\) , where \((x_1,y_1)\) and \((x_2, y_2)\) are the ending points of each detected * line segment. * param rho Distance resolution of the accumulator in pixels. * param theta Angle resolution of the accumulator in radians. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * * SEE: LineSegmentDetector */ public static void HoughLinesP(Mat image, Mat lines, double rho, double theta, int threshold) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesP_12(image.nativeObj, lines.nativeObj, rho, theta, threshold); } // // C++: void cv::HoughLinesPointSet(Mat point, Mat& lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) // /** * Finds lines in a set of points using the standard Hough transform. * * The function finds lines in a set of points using a modification of the Hough transform. * INCLUDE: snippets/imgproc_HoughLinesPointSet.cpp * param point Input vector of points. Each vector must be encoded as a Point vector \((x,y)\). Type must be CV_32FC2 or CV_32SC2. * param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \((votes, rho, theta)\). * The larger the value of 'votes', the higher the reliability of the Hough line. * param lines_max Max count of Hough lines. * param threshold %Accumulator threshold parameter. Only those lines are returned that get enough * votes ( \(>\texttt{threshold}\) ). * param min_rho Minimum value for \(\rho\) for the accumulator (Note: \(\rho\) can be negative. The absolute value \(|\rho|\) is the distance of a line to the origin.). * param max_rho Maximum value for \(\rho\) for the accumulator. * param rho_step Distance resolution of the accumulator. * param min_theta Minimum angle value of the accumulator in radians. * param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum * angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step. * param theta_step Angle resolution of the accumulator in radians. */ public static void HoughLinesPointSet(Mat point, Mat lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) { if (point != null) point.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesPointSet_10(point.nativeObj, lines.nativeObj, lines_max, threshold, min_rho, max_rho, rho_step, min_theta, max_theta, theta_step); } // // C++: void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) // /** * Finds circles in a grayscale image using the Hough transform. * * The function finds circles in a grayscale image using a modification of the Hough transform. * * Example: : * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp * * Note: Usually the function detects the centers of circles well. However, it may fail to find correct * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number * to return centers only without radius search, and find the correct radius using an additional procedure. * * It also helps to smooth image a bit unless it's already soft. For example, * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. * * param image 8-bit, single-channel, grayscale input image. * param circles Output vector of found circles. Each vector is encoded as 3 or 4 element * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) . * param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. * param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, * unless some small very circles need to be detected. * param minDist Minimum distance between the centers of the detected circles. If the parameter is * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is * too large, some circles may be missed. * param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value * shough normally be higher, such as 300 or normally exposed and contrasty images. * param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more * false circles may be detected. Circles, corresponding to the larger accumulator values, will be * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. * param minRadius Minimum circle radius. * param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. * * SEE: fitEllipse, minEnclosingCircle */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius) { if (image != null) image.ThrowIfDisposed(); if (circles != null) circles.ThrowIfDisposed(); imgproc_Imgproc_HoughCircles_10(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius, maxRadius); } /** * Finds circles in a grayscale image using the Hough transform. * * The function finds circles in a grayscale image using a modification of the Hough transform. * * Example: : * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp * * Note: Usually the function detects the centers of circles well. However, it may fail to find correct * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number * to return centers only without radius search, and find the correct radius using an additional procedure. * * It also helps to smooth image a bit unless it's already soft. For example, * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. * * param image 8-bit, single-channel, grayscale input image. * param circles Output vector of found circles. Each vector is encoded as 3 or 4 element * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) . * param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. * param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, * unless some small very circles need to be detected. * param minDist Minimum distance between the centers of the detected circles. If the parameter is * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is * too large, some circles may be missed. * param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value * shough normally be higher, such as 300 or normally exposed and contrasty images. * param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more * false circles may be detected. Circles, corresponding to the larger accumulator values, will be * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. * param minRadius Minimum circle radius. * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. * * SEE: fitEllipse, minEnclosingCircle */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2, int minRadius) { if (image != null) image.ThrowIfDisposed(); if (circles != null) circles.ThrowIfDisposed(); imgproc_Imgproc_HoughCircles_11(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2, minRadius); } /** * Finds circles in a grayscale image using the Hough transform. * * The function finds circles in a grayscale image using a modification of the Hough transform. * * Example: : * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp * * Note: Usually the function detects the centers of circles well. However, it may fail to find correct * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number * to return centers only without radius search, and find the correct radius using an additional procedure. * * It also helps to smooth image a bit unless it's already soft. For example, * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. * * param image 8-bit, single-channel, grayscale input image. * param circles Output vector of found circles. Each vector is encoded as 3 or 4 element * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) . * param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. * param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, * unless some small very circles need to be detected. * param minDist Minimum distance between the centers of the detected circles. If the parameter is * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is * too large, some circles may be missed. * param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value * shough normally be higher, such as 300 or normally exposed and contrasty images. * param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more * false circles may be detected. Circles, corresponding to the larger accumulator values, will be * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. * * SEE: fitEllipse, minEnclosingCircle */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1, double param2) { if (image != null) image.ThrowIfDisposed(); if (circles != null) circles.ThrowIfDisposed(); imgproc_Imgproc_HoughCircles_12(image.nativeObj, circles.nativeObj, method, dp, minDist, param1, param2); } /** * Finds circles in a grayscale image using the Hough transform. * * The function finds circles in a grayscale image using a modification of the Hough transform. * * Example: : * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp * * Note: Usually the function detects the centers of circles well. However, it may fail to find correct * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number * to return centers only without radius search, and find the correct radius using an additional procedure. * * It also helps to smooth image a bit unless it's already soft. For example, * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. * * param image 8-bit, single-channel, grayscale input image. * param circles Output vector of found circles. Each vector is encoded as 3 or 4 element * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) . * param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. * param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, * unless some small very circles need to be detected. * param minDist Minimum distance between the centers of the detected circles. If the parameter is * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is * too large, some circles may be missed. * param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT, * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value * shough normally be higher, such as 300 or normally exposed and contrasty images. * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more * false circles may be detected. Circles, corresponding to the larger accumulator values, will be * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. * * SEE: fitEllipse, minEnclosingCircle */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist, double param1) { if (image != null) image.ThrowIfDisposed(); if (circles != null) circles.ThrowIfDisposed(); imgproc_Imgproc_HoughCircles_13(image.nativeObj, circles.nativeObj, method, dp, minDist, param1); } /** * Finds circles in a grayscale image using the Hough transform. * * The function finds circles in a grayscale image using a modification of the Hough transform. * * Example: : * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp * * Note: Usually the function detects the centers of circles well. However, it may fail to find correct * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number * to return centers only without radius search, and find the correct radius using an additional procedure. * * It also helps to smooth image a bit unless it's already soft. For example, * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help. * * param image 8-bit, single-channel, grayscale input image. * param circles Output vector of found circles. Each vector is encoded as 3 or 4 element * floating-point vector \((x, y, radius)\) or \((x, y, radius, votes)\) . * param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT. * param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5, * unless some small very circles need to be detected. * param minDist Minimum distance between the centers of the detected circles. If the parameter is * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is * too large, some circles may be missed. * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller). * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value * shough normally be higher, such as 300 or normally exposed and contrasty images. * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more * false circles may be detected. Circles, corresponding to the larger accumulator values, will be * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure. * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine. * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less. * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles. * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses. * * SEE: fitEllipse, minEnclosingCircle */ public static void HoughCircles(Mat image, Mat circles, int method, double dp, double minDist) { if (image != null) image.ThrowIfDisposed(); if (circles != null) circles.ThrowIfDisposed(); imgproc_Imgproc_HoughCircles_14(image.nativeObj, circles.nativeObj, method, dp, minDist); } // // C++: void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** * Erodes an image by using a specific structuring element. * * The function erodes the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the minimum is taken: * * \(\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for erosion; if {code element=Mat()}, a {code 3 x 3} rectangular * structuring element is used. Kernel can be created using #getStructuringElement. * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times erosion is applied. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * param borderValue border value in case of a constant border * SEE: dilate, morphologyEx, getStructuringElement */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_erode_10(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Erodes an image by using a specific structuring element. * * The function erodes the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the minimum is taken: * * \(\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for erosion; if {code element=Mat()}, a {code 3 x 3} rectangular * structuring element is used. Kernel can be created using #getStructuringElement. * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times erosion is applied. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * SEE: dilate, morphologyEx, getStructuringElement */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_erode_11(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); } /** * Erodes an image by using a specific structuring element. * * The function erodes the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the minimum is taken: * * \(\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for erosion; if {code element=Mat()}, a {code 3 x 3} rectangular * structuring element is used. Kernel can be created using #getStructuringElement. * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times erosion is applied. * SEE: dilate, morphologyEx, getStructuringElement */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_erode_12(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); } /** * Erodes an image by using a specific structuring element. * * The function erodes the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the minimum is taken: * * \(\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for erosion; if {code element=Mat()}, a {code 3 x 3} rectangular * structuring element is used. Kernel can be created using #getStructuringElement. * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * SEE: dilate, morphologyEx, getStructuringElement */ public static void erode(Mat src, Mat dst, Mat kernel, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_erode_13(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y); } /** * Erodes an image by using a specific structuring element. * * The function erodes the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the minimum is taken: * * \(\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for erosion; if {code element=Mat()}, a {code 3 x 3} rectangular * structuring element is used. Kernel can be created using #getStructuringElement. * anchor is at the element center. * SEE: dilate, morphologyEx, getStructuringElement */ public static void erode(Mat src, Mat dst, Mat kernel) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_erode_14(src.nativeObj, dst.nativeObj, kernel.nativeObj); } // // C++: void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** * Dilates an image by using a specific structuring element. * * The function dilates the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the maximum is taken: * \(\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular * structuring element is used. Kernel can be created using #getStructuringElement * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times dilation is applied. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported. * param borderValue border value in case of a constant border * SEE: erode, morphologyEx, getStructuringElement */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_dilate_10(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Dilates an image by using a specific structuring element. * * The function dilates the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the maximum is taken: * \(\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular * structuring element is used. Kernel can be created using #getStructuringElement * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times dilation is applied. * param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported. * SEE: erode, morphologyEx, getStructuringElement */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_dilate_11(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); } /** * Dilates an image by using a specific structuring element. * * The function dilates the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the maximum is taken: * \(\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular * structuring element is used. Kernel can be created using #getStructuringElement * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * param iterations number of times dilation is applied. * SEE: erode, morphologyEx, getStructuringElement */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor, int iterations) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_dilate_12(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y, iterations); } /** * Dilates an image by using a specific structuring element. * * The function dilates the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the maximum is taken: * \(\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular * structuring element is used. Kernel can be created using #getStructuringElement * param anchor position of the anchor within the element; default value (-1, -1) means that the * anchor is at the element center. * SEE: erode, morphologyEx, getStructuringElement */ public static void dilate(Mat src, Mat dst, Mat kernel, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_dilate_13(src.nativeObj, dst.nativeObj, kernel.nativeObj, anchor.x, anchor.y); } /** * Dilates an image by using a specific structuring element. * * The function dilates the source image using the specified structuring element that determines the * shape of a pixel neighborhood over which the maximum is taken: * \(\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\) * * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In * case of multi-channel images, each channel is processed independently. * * param src input image; the number of channels can be arbitrary, but the depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst output image of the same size and type as src. * param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular * structuring element is used. Kernel can be created using #getStructuringElement * anchor is at the element center. * SEE: erode, morphologyEx, getStructuringElement */ public static void dilate(Mat src, Mat dst, Mat kernel) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_dilate_14(src.nativeObj, dst.nativeObj, kernel.nativeObj); } // // C++: void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) // /** * Performs advanced morphological transformations. * * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as * basic operations. * * Any of the operations can be done in-place. In case of multi-channel images, each channel is * processed independently. * * param src Source image. The number of channels can be arbitrary. The depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst Destination image of the same size and type as source image. * param op Type of a morphological operation, see #MorphTypes * param kernel Structuring element. It can be created using #getStructuringElement. * param anchor Anchor position with the kernel. Negative values mean that the anchor is at the * kernel center. * param iterations Number of times erosion and dilation are applied. * param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * param borderValue Border value in case of a constant border. The default value has a special * meaning. * SEE: dilate, erode, getStructuringElement * Note: The number of iterations is the number of times erosion or dilatation operation will be applied. * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_morphologyEx_10(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Performs advanced morphological transformations. * * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as * basic operations. * * Any of the operations can be done in-place. In case of multi-channel images, each channel is * processed independently. * * param src Source image. The number of channels can be arbitrary. The depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst Destination image of the same size and type as source image. * param op Type of a morphological operation, see #MorphTypes * param kernel Structuring element. It can be created using #getStructuringElement. * param anchor Anchor position with the kernel. Negative values mean that the anchor is at the * kernel center. * param iterations Number of times erosion and dilation are applied. * param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported. * meaning. * SEE: dilate, erode, getStructuringElement * Note: The number of iterations is the number of times erosion or dilatation operation will be applied. * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_morphologyEx_11(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations, borderType); } /** * Performs advanced morphological transformations. * * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as * basic operations. * * Any of the operations can be done in-place. In case of multi-channel images, each channel is * processed independently. * * param src Source image. The number of channels can be arbitrary. The depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst Destination image of the same size and type as source image. * param op Type of a morphological operation, see #MorphTypes * param kernel Structuring element. It can be created using #getStructuringElement. * param anchor Anchor position with the kernel. Negative values mean that the anchor is at the * kernel center. * param iterations Number of times erosion and dilation are applied. * meaning. * SEE: dilate, erode, getStructuringElement * Note: The number of iterations is the number of times erosion or dilatation operation will be applied. * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor, int iterations) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_morphologyEx_12(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y, iterations); } /** * Performs advanced morphological transformations. * * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as * basic operations. * * Any of the operations can be done in-place. In case of multi-channel images, each channel is * processed independently. * * param src Source image. The number of channels can be arbitrary. The depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst Destination image of the same size and type as source image. * param op Type of a morphological operation, see #MorphTypes * param kernel Structuring element. It can be created using #getStructuringElement. * param anchor Anchor position with the kernel. Negative values mean that the anchor is at the * kernel center. * meaning. * SEE: dilate, erode, getStructuringElement * Note: The number of iterations is the number of times erosion or dilatation operation will be applied. * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel, Point anchor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_morphologyEx_13(src.nativeObj, dst.nativeObj, op, kernel.nativeObj, anchor.x, anchor.y); } /** * Performs advanced morphological transformations. * * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as * basic operations. * * Any of the operations can be done in-place. In case of multi-channel images, each channel is * processed independently. * * param src Source image. The number of channels can be arbitrary. The depth should be one of * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. * param dst Destination image of the same size and type as source image. * param op Type of a morphological operation, see #MorphTypes * param kernel Structuring element. It can be created using #getStructuringElement. * kernel center. * meaning. * SEE: dilate, erode, getStructuringElement * Note: The number of iterations is the number of times erosion or dilatation operation will be applied. * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate). */ public static void morphologyEx(Mat src, Mat dst, int op, Mat kernel) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (kernel != null) kernel.ThrowIfDisposed(); imgproc_Imgproc_morphologyEx_14(src.nativeObj, dst.nativeObj, op, kernel.nativeObj); } // // C++: void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) // /** * Resizes an image. * * The function resize resizes the image src down to or up to the specified size. Note that the * initial dst type or size are not taken into account. Instead, the size and type are derived from * the {code src},{code dsize},{code fx}, and {code fy}. If you want to resize src so that it fits the pre-created dst, * you may call the function as follows: * * // explicitly specify dsize=dst.size(); fx and fy will be computed from that. * resize(src, dst, dst.size(), 0, 0, interpolation); * * If you want to decimate the image by factor of 2 in each direction, you can call the function this * way: * * // specify fx and fy and let the function compute the destination image size. * resize(src, dst, Size(), 0.5, 0.5, interpolation); * * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR * (faster but still looks OK). * * param src input image. * param dst output image; it has the size dsize (when it is non-zero) or the size computed from * src.size(), fx, and fy; the type of dst is the same as of src. * param dsize output image size; if it equals zero ({code None} in Python), it is computed as: * \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\) * Either dsize or both fx and fy must be non-zero. * param fx scale factor along the horizontal axis; when it equals 0, it is computed as * \(\texttt{(double)dsize.width/src.cols}\) * param fy scale factor along the vertical axis; when it equals 0, it is computed as * \(\texttt{(double)dsize.height/src.rows}\) * param interpolation interpolation method, see #InterpolationFlags * * SEE: warpAffine, warpPerspective, remap */ public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy, int interpolation) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_resize_10(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy, interpolation); } /** * Resizes an image. * * The function resize resizes the image src down to or up to the specified size. Note that the * initial dst type or size are not taken into account. Instead, the size and type are derived from * the {code src},{code dsize},{code fx}, and {code fy}. If you want to resize src so that it fits the pre-created dst, * you may call the function as follows: * * // explicitly specify dsize=dst.size(); fx and fy will be computed from that. * resize(src, dst, dst.size(), 0, 0, interpolation); * * If you want to decimate the image by factor of 2 in each direction, you can call the function this * way: * * // specify fx and fy and let the function compute the destination image size. * resize(src, dst, Size(), 0.5, 0.5, interpolation); * * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR * (faster but still looks OK). * * param src input image. * param dst output image; it has the size dsize (when it is non-zero) or the size computed from * src.size(), fx, and fy; the type of dst is the same as of src. * param dsize output image size; if it equals zero ({code None} in Python), it is computed as: * \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\) * Either dsize or both fx and fy must be non-zero. * param fx scale factor along the horizontal axis; when it equals 0, it is computed as * \(\texttt{(double)dsize.width/src.cols}\) * param fy scale factor along the vertical axis; when it equals 0, it is computed as * \(\texttt{(double)dsize.height/src.rows}\) * * SEE: warpAffine, warpPerspective, remap */ public static void resize(Mat src, Mat dst, Size dsize, double fx, double fy) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_resize_11(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx, fy); } /** * Resizes an image. * * The function resize resizes the image src down to or up to the specified size. Note that the * initial dst type or size are not taken into account. Instead, the size and type are derived from * the {code src},{code dsize},{code fx}, and {code fy}. If you want to resize src so that it fits the pre-created dst, * you may call the function as follows: * * // explicitly specify dsize=dst.size(); fx and fy will be computed from that. * resize(src, dst, dst.size(), 0, 0, interpolation); * * If you want to decimate the image by factor of 2 in each direction, you can call the function this * way: * * // specify fx and fy and let the function compute the destination image size. * resize(src, dst, Size(), 0.5, 0.5, interpolation); * * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR * (faster but still looks OK). * * param src input image. * param dst output image; it has the size dsize (when it is non-zero) or the size computed from * src.size(), fx, and fy; the type of dst is the same as of src. * param dsize output image size; if it equals zero ({code None} in Python), it is computed as: * \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\) * Either dsize or both fx and fy must be non-zero. * param fx scale factor along the horizontal axis; when it equals 0, it is computed as * \(\texttt{(double)dsize.width/src.cols}\) * \(\texttt{(double)dsize.height/src.rows}\) * * SEE: warpAffine, warpPerspective, remap */ public static void resize(Mat src, Mat dst, Size dsize, double fx) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_resize_12(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, fx); } /** * Resizes an image. * * The function resize resizes the image src down to or up to the specified size. Note that the * initial dst type or size are not taken into account. Instead, the size and type are derived from * the {code src},{code dsize},{code fx}, and {code fy}. If you want to resize src so that it fits the pre-created dst, * you may call the function as follows: * * // explicitly specify dsize=dst.size(); fx and fy will be computed from that. * resize(src, dst, dst.size(), 0, 0, interpolation); * * If you want to decimate the image by factor of 2 in each direction, you can call the function this * way: * * // specify fx and fy and let the function compute the destination image size. * resize(src, dst, Size(), 0.5, 0.5, interpolation); * * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR * (faster but still looks OK). * * param src input image. * param dst output image; it has the size dsize (when it is non-zero) or the size computed from * src.size(), fx, and fy; the type of dst is the same as of src. * param dsize output image size; if it equals zero ({code None} in Python), it is computed as: * \(\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\) * Either dsize or both fx and fy must be non-zero. * \(\texttt{(double)dsize.width/src.cols}\) * \(\texttt{(double)dsize.height/src.rows}\) * * SEE: warpAffine, warpPerspective, remap */ public static void resize(Mat src, Mat dst, Size dsize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_resize_13(src.nativeObj, dst.nativeObj, dsize.width, dsize.height); } // // C++: void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** * Applies an affine transformation to an image. * * The function warpAffine transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted * with #invertAffineTransform and then put in the formula above instead of M. The function cannot * operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(2\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (see #InterpolationFlags) and the optional * flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * param borderMode pixel extrapolation method (see #BorderTypes); when * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to * the "outliers" in the source image are not modified by the function. * param borderValue value used in case of a constant border; by default, it is 0. * * SEE: warpPerspective, resize, remap, getRectSubPix, transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpAffine_10(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Applies an affine transformation to an image. * * The function warpAffine transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted * with #invertAffineTransform and then put in the formula above instead of M. The function cannot * operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(2\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (see #InterpolationFlags) and the optional * flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * param borderMode pixel extrapolation method (see #BorderTypes); when * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to * the "outliers" in the source image are not modified by the function. * * SEE: warpPerspective, resize, remap, getRectSubPix, transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpAffine_11(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode); } /** * Applies an affine transformation to an image. * * The function warpAffine transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted * with #invertAffineTransform and then put in the formula above instead of M. The function cannot * operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(2\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (see #InterpolationFlags) and the optional * flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to * the "outliers" in the source image are not modified by the function. * * SEE: warpPerspective, resize, remap, getRectSubPix, transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize, int flags) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpAffine_12(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); } /** * Applies an affine transformation to an image. * * The function warpAffine transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted * with #invertAffineTransform and then put in the formula above instead of M. The function cannot * operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(2\times 3\) transformation matrix. * param dsize size of the output image. * flag #WARP_INVERSE_MAP that means that M is the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to * the "outliers" in the source image are not modified by the function. * * SEE: warpPerspective, resize, remap, getRectSubPix, transform */ public static void warpAffine(Mat src, Mat dst, Mat M, Size dsize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpAffine_13(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); } // // C++: void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** * Applies a perspective transformation to an image. * * The function warpPerspective transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert * and then put in the formula above instead of M. The function cannot operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(3\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE). * param borderValue value used in case of a constant border; by default, it equals 0. * * SEE: warpAffine, resize, remap, getRectSubPix, perspectiveTransform */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpPerspective_10(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Applies a perspective transformation to an image. * * The function warpPerspective transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert * and then put in the formula above instead of M. The function cannot operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(3\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE). * * SEE: warpAffine, resize, remap, getRectSubPix, perspectiveTransform */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags, int borderMode) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpPerspective_11(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags, borderMode); } /** * Applies a perspective transformation to an image. * * The function warpPerspective transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert * and then put in the formula above instead of M. The function cannot operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(3\times 3\) transformation matrix. * param dsize size of the output image. * param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * * SEE: warpAffine, resize, remap, getRectSubPix, perspectiveTransform */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize, int flags) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpPerspective_12(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height, flags); } /** * Applies a perspective transformation to an image. * * The function warpPerspective transforms the source image using the specified matrix: * * \(\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\) * * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert * and then put in the formula above instead of M. The function cannot operate in-place. * * param src input image. * param dst output image that has the size dsize and the same type as src . * param M \(3\times 3\) transformation matrix. * param dsize size of the output image. * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation ( * \(\texttt{dst}\rightarrow\texttt{src}\) ). * * SEE: warpAffine, resize, remap, getRectSubPix, perspectiveTransform */ public static void warpPerspective(Mat src, Mat dst, Mat M, Size dsize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (M != null) M.ThrowIfDisposed(); imgproc_Imgproc_warpPerspective_13(src.nativeObj, dst.nativeObj, M.nativeObj, dsize.width, dsize.height); } // // C++: void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) // /** * Applies a generic geometrical transformation to an image. * * The function remap transforms the source image using the specified map: * * \(\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\) * * where values of pixels with non-integer coordinates are computed using one of available * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to * convert from floating to fixed-point representations of a map is that they can yield much faster * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x), * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients. * * This function cannot operate in-place. * * param src Source image. * param dst Destination image. It has the same size as map1 and the same type as src . * param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point * representation to fixed-point for speed. * param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map * if map1 is (x,y) points), respectively. * param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA * and #INTER_LINEAR_EXACT are not supported by this function. * param borderMode Pixel extrapolation method (see #BorderTypes). When * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that * corresponds to the "outliers" in the source image are not modified by the function. * param borderValue Value used in case of a constant border. By default, it is 0. * Note: * Due to current implementation limitations the size of an input and output images should be less than 32767x32767. */ public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode, Scalar borderValue) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (map1 != null) map1.ThrowIfDisposed(); if (map2 != null) map2.ThrowIfDisposed(); imgproc_Imgproc_remap_10(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode, borderValue.val[0], borderValue.val[1], borderValue.val[2], borderValue.val[3]); } /** * Applies a generic geometrical transformation to an image. * * The function remap transforms the source image using the specified map: * * \(\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\) * * where values of pixels with non-integer coordinates are computed using one of available * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to * convert from floating to fixed-point representations of a map is that they can yield much faster * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x), * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients. * * This function cannot operate in-place. * * param src Source image. * param dst Destination image. It has the same size as map1 and the same type as src . * param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point * representation to fixed-point for speed. * param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map * if map1 is (x,y) points), respectively. * param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA * and #INTER_LINEAR_EXACT are not supported by this function. * param borderMode Pixel extrapolation method (see #BorderTypes). When * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that * corresponds to the "outliers" in the source image are not modified by the function. * Note: * Due to current implementation limitations the size of an input and output images should be less than 32767x32767. */ public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation, int borderMode) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (map1 != null) map1.ThrowIfDisposed(); if (map2 != null) map2.ThrowIfDisposed(); imgproc_Imgproc_remap_11(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation, borderMode); } /** * Applies a generic geometrical transformation to an image. * * The function remap transforms the source image using the specified map: * * \(\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\) * * where values of pixels with non-integer coordinates are computed using one of available * interpolation methods. \(map_x\) and \(map_y\) can be encoded as separate floating-point maps * in \(map_1\) and \(map_2\) respectively, or interleaved floating-point maps of \((x,y)\) in * \(map_1\), or fixed-point maps created by using #convertMaps. The reason you might want to * convert from floating to fixed-point representations of a map is that they can yield much faster * (\~2x) remapping operations. In the converted case, \(map_1\) contains pairs (cvFloor(x), * cvFloor(y)) and \(map_2\) contains indices in a table of interpolation coefficients. * * This function cannot operate in-place. * * param src Source image. * param dst Destination image. It has the same size as map1 and the same type as src . * param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point * representation to fixed-point for speed. * param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map * if map1 is (x,y) points), respectively. * param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA * and #INTER_LINEAR_EXACT are not supported by this function. * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that * corresponds to the "outliers" in the source image are not modified by the function. * Note: * Due to current implementation limitations the size of an input and output images should be less than 32767x32767. */ public static void remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (map1 != null) map1.ThrowIfDisposed(); if (map2 != null) map2.ThrowIfDisposed(); imgproc_Imgproc_remap_12(src.nativeObj, dst.nativeObj, map1.nativeObj, map2.nativeObj, interpolation); } // // C++: void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) // /** * Converts image transformation maps from one representation to another. * * The function converts a pair of maps for remap from one representation to another. The following * options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are * supported: * * * * * * * * param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . * param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), * respectively. * param dstmap1 The first output map that has the type dstmap1type and the same size as src . * param dstmap2 The second output map. * param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or * CV_32FC2 . * param nninterpolation Flag indicating whether the fixed-point maps are used for the * nearest-neighbor or for a more complex interpolation. * * SEE: remap, undistort, initUndistortRectifyMap */ public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type, bool nninterpolation) { if (map1 != null) map1.ThrowIfDisposed(); if (map2 != null) map2.ThrowIfDisposed(); if (dstmap1 != null) dstmap1.ThrowIfDisposed(); if (dstmap2 != null) dstmap2.ThrowIfDisposed(); imgproc_Imgproc_convertMaps_10(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type, nninterpolation); } /** * Converts image transformation maps from one representation to another. * * The function converts a pair of maps for remap from one representation to another. The following * options ( (map1.type(), map2.type()) \(\rightarrow\) (dstmap1.type(), dstmap2.type()) ) are * supported: * * * * * * * * param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . * param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), * respectively. * param dstmap1 The first output map that has the type dstmap1type and the same size as src . * param dstmap2 The second output map. * param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or * CV_32FC2 . * nearest-neighbor or for a more complex interpolation. * * SEE: remap, undistort, initUndistortRectifyMap */ public static void convertMaps(Mat map1, Mat map2, Mat dstmap1, Mat dstmap2, int dstmap1type) { if (map1 != null) map1.ThrowIfDisposed(); if (map2 != null) map2.ThrowIfDisposed(); if (dstmap1 != null) dstmap1.ThrowIfDisposed(); if (dstmap2 != null) dstmap2.ThrowIfDisposed(); imgproc_Imgproc_convertMaps_11(map1.nativeObj, map2.nativeObj, dstmap1.nativeObj, dstmap2.nativeObj, dstmap1type); } // // C++: Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale) // /** * Calculates an affine matrix of 2D rotation. * * The function calculates the following matrix: * * \(\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\) * * where * * \(\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\) * * The transformation maps the rotation center to itself. If this is not the target, adjust the shift. * * param center Center of the rotation in the source image. * param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the * coordinate origin is assumed to be the top-left corner). * param scale Isotropic scale factor. * * SEE: getAffineTransform, warpAffine, transform * return automatically generated */ public static Mat getRotationMatrix2D(Point center, double angle, double scale) { return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getRotationMatrix2D_10(center.x, center.y, angle, scale))); } // // C++: void cv::invertAffineTransform(Mat M, Mat& iM) // /** * Inverts an affine transformation. * * The function computes an inverse affine transformation represented by \(2 \times 3\) matrix M: * * \(\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\) * * The result is also a \(2 \times 3\) matrix of the same type as M. * * param M Original affine transformation. * param iM Output reverse affine transformation. */ public static void invertAffineTransform(Mat M, Mat iM) { if (M != null) M.ThrowIfDisposed(); if (iM != null) iM.ThrowIfDisposed(); imgproc_Imgproc_invertAffineTransform_10(M.nativeObj, iM.nativeObj); } // // C++: Mat cv::getPerspectiveTransform(Mat src, Mat dst, int solveMethod = DECOMP_LU) // /** * Calculates a perspective transform from four pairs of the corresponding points. * * The function calculates the \(3 \times 3\) matrix of a perspective transform so that: * * \(\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\) * * where * * \(dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\) * * param src Coordinates of quadrangle vertices in the source image. * param dst Coordinates of the corresponding quadrangle vertices in the destination image. * param solveMethod method passed to cv::solve (#DecompTypes) * * SEE: findHomography, warpPerspective, perspectiveTransform * return automatically generated */ public static Mat getPerspectiveTransform(Mat src, Mat dst, int solveMethod) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getPerspectiveTransform_10(src.nativeObj, dst.nativeObj, solveMethod))); } /** * Calculates a perspective transform from four pairs of the corresponding points. * * The function calculates the \(3 \times 3\) matrix of a perspective transform so that: * * \(\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\) * * where * * \(dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\) * * param src Coordinates of quadrangle vertices in the source image. * param dst Coordinates of the corresponding quadrangle vertices in the destination image. * * SEE: findHomography, warpPerspective, perspectiveTransform * return automatically generated */ public static Mat getPerspectiveTransform(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getPerspectiveTransform_11(src.nativeObj, dst.nativeObj))); } // // C++: Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst) // public static Mat getAffineTransform(MatOfPoint2f src, MatOfPoint2f dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); Mat src_mat = src; Mat dst_mat = dst; return new Mat(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_getAffineTransform_10(src_mat.nativeObj, dst_mat.nativeObj))); } // // C++: void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) // /** * Retrieves a pixel rectangle from an image with sub-pixel accuracy. * * The function getRectSubPix extracts pixels from src: * * \(patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\) * * where the values of the pixels at non-integer coordinates are retrieved using bilinear * interpolation. Every channel of multi-channel images is processed independently. Also * the image should be a single channel or three channel image. While the center of the * rectangle must be inside the image, parts of the rectangle may be outside. * * param image Source image. * param patchSize Size of the extracted patch. * param center Floating point coordinates of the center of the extracted rectangle within the * source image. The center must be inside the image. * param patch Extracted patch that has the size patchSize and the same number of channels as src . * param patchType Depth of the extracted pixels. By default, they have the same depth as src . * * SEE: warpAffine, warpPerspective */ public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch, int patchType) { if (image != null) image.ThrowIfDisposed(); if (patch != null) patch.ThrowIfDisposed(); imgproc_Imgproc_getRectSubPix_10(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj, patchType); } /** * Retrieves a pixel rectangle from an image with sub-pixel accuracy. * * The function getRectSubPix extracts pixels from src: * * \(patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\) * * where the values of the pixels at non-integer coordinates are retrieved using bilinear * interpolation. Every channel of multi-channel images is processed independently. Also * the image should be a single channel or three channel image. While the center of the * rectangle must be inside the image, parts of the rectangle may be outside. * * param image Source image. * param patchSize Size of the extracted patch. * param center Floating point coordinates of the center of the extracted rectangle within the * source image. The center must be inside the image. * param patch Extracted patch that has the size patchSize and the same number of channels as src . * * SEE: warpAffine, warpPerspective */ public static void getRectSubPix(Mat image, Size patchSize, Point center, Mat patch) { if (image != null) image.ThrowIfDisposed(); if (patch != null) patch.ThrowIfDisposed(); imgproc_Imgproc_getRectSubPix_11(image.nativeObj, patchSize.width, patchSize.height, center.x, center.y, patch.nativeObj); } // // C++: void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags) // /** * Remaps an image to semilog-polar coordinates space. * * deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG); * * * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image d)"): * \(\begin{array}{l} * dst( \rho , \phi ) = src(x,y) \\ * dst.size() \leftarrow src.size() * \end{array}\) * * where * \(\begin{array}{l} * I = (dx,dy) = (x - center.x,y - center.y) \\ * \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ * \phi = Kangle \cdot \texttt{angle} (I) \\ * \end{array}\) * * and * \(\begin{array}{l} * M = src.cols / log_e(maxRadius) \\ * Kangle = src.rows / 2\Pi \\ * \end{array}\) * * The function emulates the human "foveal" vision and can be used for fast scale and * rotation-invariant template matching, for object tracking and so forth. * param src Source image * param dst Destination image. It will have same size and type as src. * param center The transformation center; where the output precision is maximal * param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. * param flags A combination of interpolation methods, see #InterpolationFlags * * Note: * * * SEE: cv::linearPolar */ [Obsolete("This method is deprecated.")] public static void logPolar(Mat src, Mat dst, Point center, double M, int flags) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_logPolar_10(src.nativeObj, dst.nativeObj, center.x, center.y, M, flags); } // // C++: void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags) // /** * Remaps an image to polar coordinates space. * * deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags) * * * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image c)"): * \(\begin{array}{l} * dst( \rho , \phi ) = src(x,y) \\ * dst.size() \leftarrow src.size() * \end{array}\) * * where * \(\begin{array}{l} * I = (dx,dy) = (x - center.x,y - center.y) \\ * \rho = Kmag \cdot \texttt{magnitude} (I) ,\\ * \phi = angle \cdot \texttt{angle} (I) * \end{array}\) * * and * \(\begin{array}{l} * Kx = src.cols / maxRadius \\ * Ky = src.rows / 2\Pi * \end{array}\) * * * param src Source image * param dst Destination image. It will have same size and type as src. * param center The transformation center; * param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. * param flags A combination of interpolation methods, see #InterpolationFlags * * Note: * * * SEE: cv::logPolar */ [Obsolete("This method is deprecated.")] public static void linearPolar(Mat src, Mat dst, Point center, double maxRadius, int flags) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_linearPolar_10(src.nativeObj, dst.nativeObj, center.x, center.y, maxRadius, flags); } // // C++: void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags) // /** * Remaps an image to polar or semilog-polar coordinates space * * polar_remaps_reference_image * ![Polar remaps reference](pics/polar_remap_doc.png) * * Transform the source image using the following transformation: * \( * dst(\rho , \phi ) = src(x,y) * \) * * where * \( * \begin{array}{l} * \vec{I} = (x - center.x, \;y - center.y) \\ * \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ * \rho = \left\{\begin{matrix} * Klin \cdot \texttt{magnitude} (\vec{I}) & default \\ * Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\ * \end{matrix}\right. * \end{array} * \) * * and * \( * \begin{array}{l} * Kangle = dsize.height / 2\Pi \\ * Klin = dsize.width / maxRadius \\ * Klog = dsize.width / log_e(maxRadius) \\ * \end{array} * \) * * * \par Linear vs semilog mapping * * Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to {code flags} to specify the polar mapping mode. * * Linear is the default mode. * * The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision) * in contrast to peripheral vision where acuity is minor. * * \par Option on {code dsize}: * * * * * * * * * * \par Reverse mapping * * You can get reverse mapping adding #WARP_INVERSE_MAP to {code flags} * \snippet polar_transforms.cpp InverseMap * * In addiction, to calculate the original coordinate from a polar mapped coordinate \((rho, phi)->(x, y)\): * \snippet polar_transforms.cpp InverseCoordinate * * param src Source image. * param dst Destination image. It will have same type as src. * param dsize The destination image size (see description for valid options). * param center The transformation center. * param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. * param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode. * * Note: * * * SEE: cv::remap */ public static void warpPolar(Mat src, Mat dst, Size dsize, Point center, double maxRadius, int flags) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_warpPolar_10(src.nativeObj, dst.nativeObj, dsize.width, dsize.height, center.x, center.y, maxRadius, flags); } // // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1) // /** * Calculates the integral of an image. * * The function calculates one or more integral images for the source image as follows: * * \(\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\) * * \(\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\) * * \(\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\) * * Using these integral images, you can calculate sum, mean, and standard deviation over a specific * up-right or rotated rectangular region of the image in a constant time, for example: * * \(\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\) * * It makes possible to do a fast blurring or fast block correlation with a variable window size, for * example. In case of multi-channel images, sums for each channel are accumulated independently. * * As a practical example, the next figure shows the calculation of the integral of a straight * rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the * original image are shown, as well as the relative pixels in the integral images sum and tilted . * * ![integral calculation example](pics/integral.png) * * param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f). * param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f). * param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision * floating-point (64f) array. * param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with * the same data type as sum. * param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or * CV_64F. * param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F. */ public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth, int sqdepth) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); if (tilted != null) tilted.ThrowIfDisposed(); imgproc_Imgproc_integral3_10(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth, sqdepth); } /** * Calculates the integral of an image. * * The function calculates one or more integral images for the source image as follows: * * \(\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\) * * \(\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\) * * \(\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\) * * Using these integral images, you can calculate sum, mean, and standard deviation over a specific * up-right or rotated rectangular region of the image in a constant time, for example: * * \(\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\) * * It makes possible to do a fast blurring or fast block correlation with a variable window size, for * example. In case of multi-channel images, sums for each channel are accumulated independently. * * As a practical example, the next figure shows the calculation of the integral of a straight * rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the * original image are shown, as well as the relative pixels in the integral images sum and tilted . * * ![integral calculation example](pics/integral.png) * * param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f). * param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f). * param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision * floating-point (64f) array. * param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with * the same data type as sum. * param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or * CV_64F. */ public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted, int sdepth) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); if (tilted != null) tilted.ThrowIfDisposed(); imgproc_Imgproc_integral3_11(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj, sdepth); } /** * Calculates the integral of an image. * * The function calculates one or more integral images for the source image as follows: * * \(\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\) * * \(\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2\) * * \(\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)\) * * Using these integral images, you can calculate sum, mean, and standard deviation over a specific * up-right or rotated rectangular region of the image in a constant time, for example: * * \(\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\) * * It makes possible to do a fast blurring or fast block correlation with a variable window size, for * example. In case of multi-channel images, sums for each channel are accumulated independently. * * As a practical example, the next figure shows the calculation of the integral of a straight * rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the * original image are shown, as well as the relative pixels in the integral images sum and tilted . * * ![integral calculation example](pics/integral.png) * * param src input image as \(W \times H\), 8-bit or floating-point (32f or 64f). * param sum integral image as \((W+1)\times (H+1)\) , 32-bit integer or floating-point (32f or 64f). * param sqsum integral image for squared pixel values; it is \((W+1)\times (H+1)\), double-precision * floating-point (64f) array. * param tilted integral for the image rotated by 45 degrees; it is \((W+1)\times (H+1)\) array with * the same data type as sum. * CV_64F. */ public static void integral3(Mat src, Mat sum, Mat sqsum, Mat tilted) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); if (tilted != null) tilted.ThrowIfDisposed(); imgproc_Imgproc_integral3_12(src.nativeObj, sum.nativeObj, sqsum.nativeObj, tilted.nativeObj); } // // C++: void cv::integral(Mat src, Mat& sum, int sdepth = -1) // public static void integral(Mat src, Mat sum, int sdepth) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); imgproc_Imgproc_integral_10(src.nativeObj, sum.nativeObj, sdepth); } public static void integral(Mat src, Mat sum) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); imgproc_Imgproc_integral_11(src.nativeObj, sum.nativeObj); } // // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1) // public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth, int sqdepth) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); imgproc_Imgproc_integral2_10(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth, sqdepth); } public static void integral2(Mat src, Mat sum, Mat sqsum, int sdepth) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); imgproc_Imgproc_integral2_11(src.nativeObj, sum.nativeObj, sqsum.nativeObj, sdepth); } public static void integral2(Mat src, Mat sum, Mat sqsum) { if (src != null) src.ThrowIfDisposed(); if (sum != null) sum.ThrowIfDisposed(); if (sqsum != null) sqsum.ThrowIfDisposed(); imgproc_Imgproc_integral2_12(src.nativeObj, sum.nativeObj, sqsum.nativeObj); } // // C++: void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat()) // /** * Adds an image to the accumulator image. * * The function adds src or some of its elements to dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * The function cv::accumulate can be used, for example, to collect statistics of a scene background * viewed by a still camera and for the further foreground-background segmentation. * * param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer. * param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F. * param mask Optional operation mask. * * SEE: accumulateSquare, accumulateProduct, accumulateWeighted */ public static void accumulate(Mat src, Mat dst, Mat mask) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); imgproc_Imgproc_accumulate_10(src.nativeObj, dst.nativeObj, mask.nativeObj); } /** * Adds an image to the accumulator image. * * The function adds src or some of its elements to dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * The function cv::accumulate can be used, for example, to collect statistics of a scene background * viewed by a still camera and for the further foreground-background segmentation. * * param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer. * param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F. * * SEE: accumulateSquare, accumulateProduct, accumulateWeighted */ public static void accumulate(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_accumulate_11(src.nativeObj, dst.nativeObj); } // // C++: void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) // /** * Adds the square of a source image to the accumulator image. * * The function adds the input image src or its selected region, raised to a power of 2, to the * accumulator dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit * floating-point. * param mask Optional operation mask. * * SEE: accumulateSquare, accumulateProduct, accumulateWeighted */ public static void accumulateSquare(Mat src, Mat dst, Mat mask) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); imgproc_Imgproc_accumulateSquare_10(src.nativeObj, dst.nativeObj, mask.nativeObj); } /** * Adds the square of a source image to the accumulator image. * * The function adds the input image src or its selected region, raised to a power of 2, to the * accumulator dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit * floating-point. * * SEE: accumulateSquare, accumulateProduct, accumulateWeighted */ public static void accumulateSquare(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_accumulateSquare_11(src.nativeObj, dst.nativeObj); } // // C++: void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) // /** * Adds the per-element product of two input images to the accumulator image. * * The function adds the product of two images or their selected regions to the accumulator dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. * param src2 Second input image of the same type and the same size as src1 . * param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit * floating-point. * param mask Optional operation mask. * * SEE: accumulate, accumulateSquare, accumulateWeighted */ public static void accumulateProduct(Mat src1, Mat src2, Mat dst, Mat mask) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); imgproc_Imgproc_accumulateProduct_10(src1.nativeObj, src2.nativeObj, dst.nativeObj, mask.nativeObj); } /** * Adds the per-element product of two input images to the accumulator image. * * The function adds the product of two images or their selected regions to the accumulator dst : * * \(\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * The function supports multi-channel images. Each channel is processed independently. * * param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point. * param src2 Second input image of the same type and the same size as src1 . * param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit * floating-point. * * SEE: accumulate, accumulateSquare, accumulateWeighted */ public static void accumulateProduct(Mat src1, Mat src2, Mat dst) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_accumulateProduct_11(src1.nativeObj, src2.nativeObj, dst.nativeObj); } // // C++: void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) // /** * Updates a running average. * * The function calculates the weighted sum of the input image src and the accumulator dst so that dst * becomes a running average of a frame sequence: * * \(\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). * The function supports multi-channel images. Each channel is processed independently. * * param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit * floating-point. * param alpha Weight of the input image. * param mask Optional operation mask. * * SEE: accumulate, accumulateSquare, accumulateProduct */ public static void accumulateWeighted(Mat src, Mat dst, double alpha, Mat mask) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); imgproc_Imgproc_accumulateWeighted_10(src.nativeObj, dst.nativeObj, alpha, mask.nativeObj); } /** * Updates a running average. * * The function calculates the weighted sum of the input image src and the accumulator dst so that dst * becomes a running average of a frame sequence: * * \(\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0\) * * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images). * The function supports multi-channel images. Each channel is processed independently. * * param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point. * param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit * floating-point. * param alpha Weight of the input image. * * SEE: accumulate, accumulateSquare, accumulateProduct */ public static void accumulateWeighted(Mat src, Mat dst, double alpha) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_accumulateWeighted_11(src.nativeObj, dst.nativeObj, alpha); } // // C++: Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0) // /** * The function is used to detect translational shifts that occur between two images. * * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in * the frequency domain. It can be used for fast image registration as well as motion estimation. For * more information please see <http://en.wikipedia.org/wiki/Phase_correlation> * * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed * with getOptimalDFTSize. * * The function performs the following equations: * * * param src1 Source floating point array (CV_32FC1 or CV_64FC1) * param src2 Source floating point array (CV_32FC1 or CV_64FC1) * param window Floating point array with windowing coefficients to reduce edge effects (optional). * param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). * return detected phase shift (sub-pixel) between the two arrays. * * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow */ public static Point phaseCorrelate(Mat src1, Mat src2, Mat window, double[] response) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (window != null) window.ThrowIfDisposed(); double[] response_out = new double[1]; double[] tmpArray = new double[2]; imgproc_Imgproc_phaseCorrelate_10(src1.nativeObj, src2.nativeObj, window.nativeObj, response_out, tmpArray); Point retVal = new Point(tmpArray); if (response != null) response[0] = (double)response_out[0]; return retVal; } /** * The function is used to detect translational shifts that occur between two images. * * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in * the frequency domain. It can be used for fast image registration as well as motion estimation. For * more information please see <http://en.wikipedia.org/wiki/Phase_correlation> * * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed * with getOptimalDFTSize. * * The function performs the following equations: * * * param src1 Source floating point array (CV_32FC1 or CV_64FC1) * param src2 Source floating point array (CV_32FC1 or CV_64FC1) * param window Floating point array with windowing coefficients to reduce edge effects (optional). * return detected phase shift (sub-pixel) between the two arrays. * * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow */ public static Point phaseCorrelate(Mat src1, Mat src2, Mat window) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (window != null) window.ThrowIfDisposed(); double[] tmpArray = new double[2]; imgproc_Imgproc_phaseCorrelate_11(src1.nativeObj, src2.nativeObj, window.nativeObj, tmpArray); Point retVal = new Point(tmpArray); return retVal; } /** * The function is used to detect translational shifts that occur between two images. * * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in * the frequency domain. It can be used for fast image registration as well as motion estimation. For * more information please see <http://en.wikipedia.org/wiki/Phase_correlation> * * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed * with getOptimalDFTSize. * * The function performs the following equations: * * * param src1 Source floating point array (CV_32FC1 or CV_64FC1) * param src2 Source floating point array (CV_32FC1 or CV_64FC1) * return detected phase shift (sub-pixel) between the two arrays. * * SEE: dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow */ public static Point phaseCorrelate(Mat src1, Mat src2) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); double[] tmpArray = new double[2]; imgproc_Imgproc_phaseCorrelate_12(src1.nativeObj, src2.nativeObj, tmpArray); Point retVal = new Point(tmpArray); return retVal; } // // C++: void cv::createHanningWindow(Mat& dst, Size winSize, int type) // /** * This function computes a Hanning window coefficients in two dimensions. * * See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) * for more information. * * An example is shown below: * * // create hanning window of size 100x100 and type CV_32F * Mat hann; * createHanningWindow(hann, Size(100, 100), CV_32F); * * param dst Destination array to place Hann coefficients in * param winSize The window size specifications (both width and height must be > 1) * param type Created array type */ public static void createHanningWindow(Mat dst, Size winSize, int type) { if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_createHanningWindow_10(dst.nativeObj, winSize.width, winSize.height, type); } // // C++: void cv::divSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false) // /** * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum. * * The function cv::divSpectrums performs the per-element division of the first array by the second array. * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform. * * param a first input array. * param b second input array of the same size and type as src1 . * param c output array of the same size and type as src1 . * param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a {code 0} as value. * param conjB optional flag that conjugates the second input array before the multiplication (true) * or not (false). */ public static void divSpectrums(Mat a, Mat b, Mat c, int flags, bool conjB) { if (a != null) a.ThrowIfDisposed(); if (b != null) b.ThrowIfDisposed(); if (c != null) c.ThrowIfDisposed(); imgproc_Imgproc_divSpectrums_10(a.nativeObj, b.nativeObj, c.nativeObj, flags, conjB); } /** * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum. * * The function cv::divSpectrums performs the per-element division of the first array by the second array. * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform. * * param a first input array. * param b second input array of the same size and type as src1 . * param c output array of the same size and type as src1 . * param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a {code 0} as value. * or not (false). */ public static void divSpectrums(Mat a, Mat b, Mat c, int flags) { if (a != null) a.ThrowIfDisposed(); if (b != null) b.ThrowIfDisposed(); if (c != null) c.ThrowIfDisposed(); imgproc_Imgproc_divSpectrums_11(a.nativeObj, b.nativeObj, c.nativeObj, flags); } // // C++: double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type) // /** * Applies a fixed-level threshold to each array element. * * The function applies fixed-level thresholding to a multiple-channel array. The function is typically * used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for * this purpose) or for removing a noise, that is, filtering out pixels with too small or too large * values. There are several types of thresholding supported by the function. They are determined by * type parameter. * * Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the * above values. In these cases, the function determines the optimal threshold value using the Otsu's * or Triangle algorithm and uses it instead of the specified thresh. * * Note: Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images. * * param src input array (multiple-channel, 8-bit or 32-bit floating point). * param dst output array of the same size and type and the same number of channels as src. * param thresh threshold value. * param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding * types. * param type thresholding type (see #ThresholdTypes). * return the computed threshold value if Otsu's or Triangle methods used. * * SEE: adaptiveThreshold, findContours, compare, min, max */ public static double threshold(Mat src, Mat dst, double thresh, double maxval, int type) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); return imgproc_Imgproc_threshold_10(src.nativeObj, dst.nativeObj, thresh, maxval, type); } // // C++: void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) // /** * Applies an adaptive threshold to an array. * * The function transforms a grayscale image to a binary image according to the formulae: * * * The function can process the image in-place. * * param src Source 8-bit single-channel image. * param dst Destination image of the same size and the same type as src. * param maxValue Non-zero value assigned to the pixels for which the condition is satisfied * param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes. * The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries. * param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV, * see #ThresholdTypes. * param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the * pixel: 3, 5, 7, and so on. * param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it * is positive but may be zero or negative as well. * * SEE: threshold, blur, GaussianBlur */ public static void adaptiveThreshold(Mat src, Mat dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_adaptiveThreshold_10(src.nativeObj, dst.nativeObj, maxValue, adaptiveMethod, thresholdType, blockSize, C); } // // C++: void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) // /** * Blurs an image and downsamples it. * * By default, size of the output image is computed as {code Size((src.cols+1)/2, (src.rows+1)/2)}, but in * any case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\) * * The function performs the downsampling step of the Gaussian pyramid construction. First, it * convolves the source image with the kernel: * * \(\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\) * * Then, it downsamples the image by rejecting even rows and columns. * * param src input image. * param dst output image; it has the specified size and the same type as src. * param dstsize size of the output image. * param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported) */ public static void pyrDown(Mat src, Mat dst, Size dstsize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrDown_10(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); } /** * Blurs an image and downsamples it. * * By default, size of the output image is computed as {code Size((src.cols+1)/2, (src.rows+1)/2)}, but in * any case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\) * * The function performs the downsampling step of the Gaussian pyramid construction. First, it * convolves the source image with the kernel: * * \(\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\) * * Then, it downsamples the image by rejecting even rows and columns. * * param src input image. * param dst output image; it has the specified size and the same type as src. * param dstsize size of the output image. */ public static void pyrDown(Mat src, Mat dst, Size dstsize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrDown_11(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); } /** * Blurs an image and downsamples it. * * By default, size of the output image is computed as {code Size((src.cols+1)/2, (src.rows+1)/2)}, but in * any case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\) * * The function performs the downsampling step of the Gaussian pyramid construction. First, it * convolves the source image with the kernel: * * \(\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\) * * Then, it downsamples the image by rejecting even rows and columns. * * param src input image. * param dst output image; it has the specified size and the same type as src. */ public static void pyrDown(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrDown_12(src.nativeObj, dst.nativeObj); } // // C++: void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) // /** * Upsamples an image and then blurs it. * * By default, size of the output image is computed as {code Size(src.cols\*2, (src.rows\*2)}, but in any * case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\) * * The function performs the upsampling step of the Gaussian pyramid construction, though it can * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by * injecting even zero rows and columns and then convolves the result with the same kernel as in * pyrDown multiplied by 4. * * param src input image. * param dst output image. It has the specified size and the same type as src . * param dstsize size of the output image. * param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported) */ public static void pyrUp(Mat src, Mat dst, Size dstsize, int borderType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrUp_10(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height, borderType); } /** * Upsamples an image and then blurs it. * * By default, size of the output image is computed as {code Size(src.cols\*2, (src.rows\*2)}, but in any * case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\) * * The function performs the upsampling step of the Gaussian pyramid construction, though it can * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by * injecting even zero rows and columns and then convolves the result with the same kernel as in * pyrDown multiplied by 4. * * param src input image. * param dst output image. It has the specified size and the same type as src . * param dstsize size of the output image. */ public static void pyrUp(Mat src, Mat dst, Size dstsize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrUp_11(src.nativeObj, dst.nativeObj, dstsize.width, dstsize.height); } /** * Upsamples an image and then blurs it. * * By default, size of the output image is computed as {code Size(src.cols\*2, (src.rows\*2)}, but in any * case, the following conditions should be satisfied: * * \(\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\) * * The function performs the upsampling step of the Gaussian pyramid construction, though it can * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by * injecting even zero rows and columns and then convolves the result with the same kernel as in * pyrDown multiplied by 4. * * param src input image. * param dst output image. It has the specified size and the same type as src . */ public static void pyrUp(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrUp_12(src.nativeObj, dst.nativeObj); } // // C++: void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) // /** * * * this variant supports only uniform histograms. * * ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements * (histSize.size() element pairs). The first and second elements of each pair specify the lower and * upper boundaries. * param images automatically generated * param channels automatically generated * param mask automatically generated * param hist automatically generated * param histSize automatically generated * param ranges automatically generated * param accumulate automatically generated */ public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges, bool accumulate) { if (channels != null) channels.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (hist != null) hist.ThrowIfDisposed(); if (histSize != null) histSize.ThrowIfDisposed(); if (ranges != null) ranges.ThrowIfDisposed(); Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat histSize_mat = histSize; Mat ranges_mat = ranges; imgproc_Imgproc_calcHist_10(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj, accumulate); } /** * * * this variant supports only uniform histograms. * * ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements * (histSize.size() element pairs). The first and second elements of each pair specify the lower and * upper boundaries. * param images automatically generated * param channels automatically generated * param mask automatically generated * param hist automatically generated * param histSize automatically generated * param ranges automatically generated */ public static void calcHist(List images, MatOfInt channels, Mat mask, Mat hist, MatOfInt histSize, MatOfFloat ranges) { if (channels != null) channels.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (hist != null) hist.ThrowIfDisposed(); if (histSize != null) histSize.ThrowIfDisposed(); if (ranges != null) ranges.ThrowIfDisposed(); Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat histSize_mat = histSize; Mat ranges_mat = ranges; imgproc_Imgproc_calcHist_11(images_mat.nativeObj, channels_mat.nativeObj, mask.nativeObj, hist.nativeObj, histSize_mat.nativeObj, ranges_mat.nativeObj); } // // C++: void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) // public static void calcBackProject(List images, MatOfInt channels, Mat hist, Mat dst, MatOfFloat ranges, double scale) { if (channels != null) channels.ThrowIfDisposed(); if (hist != null) hist.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (ranges != null) ranges.ThrowIfDisposed(); Mat images_mat = Converters.vector_Mat_to_Mat(images); Mat channels_mat = channels; Mat ranges_mat = ranges; imgproc_Imgproc_calcBackProject_10(images_mat.nativeObj, channels_mat.nativeObj, hist.nativeObj, dst.nativeObj, ranges_mat.nativeObj, scale); } // // C++: double cv::compareHist(Mat H1, Mat H2, int method) // /** * Compares two histograms. * * The function cv::compareHist compares two dense or two sparse histograms using the specified method. * * The function returns \(d(H_1, H_2)\) . * * While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable * for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling * problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms * or more general sparse configurations of weighted points, consider using the #EMD function. * * param H1 First compared histogram. * param H2 Second compared histogram of the same size as H1 . * param method Comparison method, see #HistCompMethods * return automatically generated */ public static double compareHist(Mat H1, Mat H2, int method) { if (H1 != null) H1.ThrowIfDisposed(); if (H2 != null) H2.ThrowIfDisposed(); return imgproc_Imgproc_compareHist_10(H1.nativeObj, H2.nativeObj, method); } // // C++: void cv::equalizeHist(Mat src, Mat& dst) // /** * Equalizes the histogram of a grayscale image. * * The function equalizes the histogram of the input image using the following algorithm: * *
    *
  • * Calculate the histogram \(H\) for src . *
  • *
  • * Normalize the histogram so that the sum of histogram bins is 255. *
  • *
  • * Compute the integral of the histogram: * \(H'_i = \sum _{0 \le j < i} H(j)\) *
  • *
  • * Transform the image using \(H'\) as a look-up table: \(\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\) *
  • *
* * The algorithm normalizes the brightness and increases the contrast of the image. * * param src Source 8-bit single channel image. * param dst Destination image of the same size and type as src . */ public static void equalizeHist(Mat src, Mat dst) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_equalizeHist_10(src.nativeObj, dst.nativeObj); } // // C++: Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)) // /** * Creates a smart pointer to a cv::CLAHE class and initializes it. * * param clipLimit Threshold for contrast limiting. * param tileGridSize Size of grid for histogram equalization. Input image will be divided into * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. * return automatically generated */ public static CLAHE createCLAHE(double clipLimit, Size tileGridSize) { return CLAHE.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createCLAHE_10(clipLimit, tileGridSize.width, tileGridSize.height))); } /** * Creates a smart pointer to a cv::CLAHE class and initializes it. * * param clipLimit Threshold for contrast limiting. * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. * return automatically generated */ public static CLAHE createCLAHE(double clipLimit) { return CLAHE.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createCLAHE_11(clipLimit))); } /** * Creates a smart pointer to a cv::CLAHE class and initializes it. * * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. * return automatically generated */ public static CLAHE createCLAHE() { return CLAHE.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createCLAHE_12())); } // // C++: float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr(), Mat& flow = Mat()) // /** * Computes the "minimal work" distance between two weighted point configurations. * * The function computes the earth mover distance and/or a lower boundary of the distance between the * two weighted point configurations. One of the applications described in CITE: RubnerSept98, * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation * problem that is solved using some modification of a simplex algorithm, thus the complexity is * exponential in the worst case, though, on average it is much faster. In the case of a real metric * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used * to determine roughly whether the two signatures are far enough so that they cannot relate to the * same object. * * param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix. * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have * a single column (weights only) if the user-defined cost matrix is used. The weights must be * non-negative and have at least one non-zero value. * param signature2 Second signature of the same format as signature1 , though the number of rows * may be different. The total weights may be different. In this case an extra "dummy" point is added * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero * value. * param distType Used metric. See #DistanceTypes. * param cost User-defined \(\texttt{size1}\times \texttt{size2}\) cost matrix. Also, if a cost matrix * is used, lower boundary lowerBound cannot be calculated because it needs a metric function. * signatures that is a distance between mass centers. The lower boundary may not be calculated if * the user-defined cost matrix is used, the total weights of point configurations are not equal, or * if the signatures consist of weights only (the signature matrices have a single column). You * must initialize \*lowerBound . If the calculated distance between mass centers is greater or * equal to \*lowerBound (it means that the signatures are far enough), the function does not * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound * should be set to 0. * param flow Resultant \(\texttt{size1} \times \texttt{size2}\) flow matrix: \(\texttt{flow}_{i,j}\) is * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 . * return automatically generated */ public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost, Mat flow) { if (signature1 != null) signature1.ThrowIfDisposed(); if (signature2 != null) signature2.ThrowIfDisposed(); if (cost != null) cost.ThrowIfDisposed(); if (flow != null) flow.ThrowIfDisposed(); return imgproc_Imgproc_EMD_10(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj, flow.nativeObj); } /** * Computes the "minimal work" distance between two weighted point configurations. * * The function computes the earth mover distance and/or a lower boundary of the distance between the * two weighted point configurations. One of the applications described in CITE: RubnerSept98, * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation * problem that is solved using some modification of a simplex algorithm, thus the complexity is * exponential in the worst case, though, on average it is much faster. In the case of a real metric * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used * to determine roughly whether the two signatures are far enough so that they cannot relate to the * same object. * * param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix. * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have * a single column (weights only) if the user-defined cost matrix is used. The weights must be * non-negative and have at least one non-zero value. * param signature2 Second signature of the same format as signature1 , though the number of rows * may be different. The total weights may be different. In this case an extra "dummy" point is added * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero * value. * param distType Used metric. See #DistanceTypes. * param cost User-defined \(\texttt{size1}\times \texttt{size2}\) cost matrix. Also, if a cost matrix * is used, lower boundary lowerBound cannot be calculated because it needs a metric function. * signatures that is a distance between mass centers. The lower boundary may not be calculated if * the user-defined cost matrix is used, the total weights of point configurations are not equal, or * if the signatures consist of weights only (the signature matrices have a single column). You * must initialize \*lowerBound . If the calculated distance between mass centers is greater or * equal to \*lowerBound (it means that the signatures are far enough), the function does not * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound * should be set to 0. * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 . * return automatically generated */ public static float EMD(Mat signature1, Mat signature2, int distType, Mat cost) { if (signature1 != null) signature1.ThrowIfDisposed(); if (signature2 != null) signature2.ThrowIfDisposed(); if (cost != null) cost.ThrowIfDisposed(); return imgproc_Imgproc_EMD_11(signature1.nativeObj, signature2.nativeObj, distType, cost.nativeObj); } /** * Computes the "minimal work" distance between two weighted point configurations. * * The function computes the earth mover distance and/or a lower boundary of the distance between the * two weighted point configurations. One of the applications described in CITE: RubnerSept98, * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation * problem that is solved using some modification of a simplex algorithm, thus the complexity is * exponential in the worst case, though, on average it is much faster. In the case of a real metric * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used * to determine roughly whether the two signatures are far enough so that they cannot relate to the * same object. * * param signature1 First signature, a \(\texttt{size1}\times \texttt{dims}+1\) floating-point matrix. * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have * a single column (weights only) if the user-defined cost matrix is used. The weights must be * non-negative and have at least one non-zero value. * param signature2 Second signature of the same format as signature1 , though the number of rows * may be different. The total weights may be different. In this case an extra "dummy" point is added * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero * value. * param distType Used metric. See #DistanceTypes. * is used, lower boundary lowerBound cannot be calculated because it needs a metric function. * signatures that is a distance between mass centers. The lower boundary may not be calculated if * the user-defined cost matrix is used, the total weights of point configurations are not equal, or * if the signatures consist of weights only (the signature matrices have a single column). You * must initialize \*lowerBound . If the calculated distance between mass centers is greater or * equal to \*lowerBound (it means that the signatures are far enough), the function does not * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound * should be set to 0. * a flow from \(i\) -th point of signature1 to \(j\) -th point of signature2 . * return automatically generated */ public static float EMD(Mat signature1, Mat signature2, int distType) { if (signature1 != null) signature1.ThrowIfDisposed(); if (signature2 != null) signature2.ThrowIfDisposed(); return imgproc_Imgproc_EMD_13(signature1.nativeObj, signature2.nativeObj, distType); } // // C++: void cv::watershed(Mat image, Mat& markers) // /** * Performs a marker-based image segmentation using the watershed algorithm. * * The function implements one of the variants of watershed, non-parametric marker-based segmentation * algorithm, described in CITE: Meyer92 . * * Before passing the image to the function, you have to roughly outline the desired regions in the * image markers with positive (>0) indices. So, every region is represented as one or more connected * components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary * mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of * the future image regions. All the other pixels in markers , whose relation to the outlined regions * is not known and should be defined by the algorithm, should be set to 0's. In the function output, * each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the * regions. * * Note: Any two neighbor connected components are not necessarily separated by a watershed boundary * (-1's pixels); for example, they can touch each other in the initial marker image passed to the * function. * * param image Input 8-bit 3-channel image. * param markers Input/output 32-bit single-channel image (map) of markers. It should have the same * size as image . * * SEE: findContours */ public static void watershed(Mat image, Mat markers) { if (image != null) image.ThrowIfDisposed(); if (markers != null) markers.ThrowIfDisposed(); imgproc_Imgproc_watershed_10(image.nativeObj, markers.nativeObj); } // // C++: void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) // /** * Performs initial step of meanshift segmentation of an image. * * The function implements the filtering stage of meanshift segmentation, that is, the output of the * function is the filtered "posterized" image with color gradients and fine-grain texture flattened. * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is * considered: * * \((x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\) * * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively * (though, the algorithm does not depend on the color space used, so any 3-component color space can * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector * (R',G',B') are found and they act as the neighborhood center on the next iteration: * * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\) * * After the iterations over, the color components of the initial pixel (that is, the pixel from where * the iterations started) are set to the final value (average color at the last iteration): * * \(I(X,Y) <- (R*,G*,B*)\) * * When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is * run on the smallest layer first. After that, the results are propagated to the larger layer and the * iterations are run again only on those pixels where the layer colors differ by more than sr from the * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the * results will be actually different from the ones obtained by running the meanshift procedure on the * whole original image (i.e. when maxLevel==0). * * param src The source 8-bit, 3-channel image. * param dst The destination image of the same format and the same size as the source. * param sp The spatial window radius. * param sr The color window radius. * param maxLevel Maximum level of the pyramid for the segmentation. * param termcrit Termination criteria: when to stop meanshift iterations. */ public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel, TermCriteria termcrit) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrMeanShiftFiltering_10(src.nativeObj, dst.nativeObj, sp, sr, maxLevel, termcrit.type, termcrit.maxCount, termcrit.epsilon); } /** * Performs initial step of meanshift segmentation of an image. * * The function implements the filtering stage of meanshift segmentation, that is, the output of the * function is the filtered "posterized" image with color gradients and fine-grain texture flattened. * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is * considered: * * \((x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\) * * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively * (though, the algorithm does not depend on the color space used, so any 3-component color space can * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector * (R',G',B') are found and they act as the neighborhood center on the next iteration: * * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\) * * After the iterations over, the color components of the initial pixel (that is, the pixel from where * the iterations started) are set to the final value (average color at the last iteration): * * \(I(X,Y) <- (R*,G*,B*)\) * * When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is * run on the smallest layer first. After that, the results are propagated to the larger layer and the * iterations are run again only on those pixels where the layer colors differ by more than sr from the * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the * results will be actually different from the ones obtained by running the meanshift procedure on the * whole original image (i.e. when maxLevel==0). * * param src The source 8-bit, 3-channel image. * param dst The destination image of the same format and the same size as the source. * param sp The spatial window radius. * param sr The color window radius. * param maxLevel Maximum level of the pyramid for the segmentation. */ public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr, int maxLevel) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrMeanShiftFiltering_11(src.nativeObj, dst.nativeObj, sp, sr, maxLevel); } /** * Performs initial step of meanshift segmentation of an image. * * The function implements the filtering stage of meanshift segmentation, that is, the output of the * function is the filtered "posterized" image with color gradients and fine-grain texture flattened. * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is * considered: * * \((x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\) * * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively * (though, the algorithm does not depend on the color space used, so any 3-component color space can * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector * (R',G',B') are found and they act as the neighborhood center on the next iteration: * * \((X,Y)~(X',Y'), (R,G,B)~(R',G',B').\) * * After the iterations over, the color components of the initial pixel (that is, the pixel from where * the iterations started) are set to the final value (average color at the last iteration): * * \(I(X,Y) <- (R*,G*,B*)\) * * When maxLevel > 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is * run on the smallest layer first. After that, the results are propagated to the larger layer and the * iterations are run again only on those pixels where the layer colors differ by more than sr from the * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the * results will be actually different from the ones obtained by running the meanshift procedure on the * whole original image (i.e. when maxLevel==0). * * param src The source 8-bit, 3-channel image. * param dst The destination image of the same format and the same size as the source. * param sp The spatial window radius. * param sr The color window radius. */ public static void pyrMeanShiftFiltering(Mat src, Mat dst, double sp, double sr) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_pyrMeanShiftFiltering_12(src.nativeObj, dst.nativeObj, sp, sr); } // // C++: void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) // /** * Runs the GrabCut algorithm. * * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). * * param img Input 8-bit 3-channel image. * param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses. * param rect ROI containing a segmented object. The pixels outside of the ROI are marked as * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT . * param bgdModel Temporary array for the background model. Do not modify it while you are * processing the same image. * param fgdModel Temporary arrays for the foreground model. Do not modify it while you are * processing the same image. * param iterCount Number of iterations the algorithm should make before returning the result. Note * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or * mode==GC_EVAL . * param mode Operation mode that could be one of the #GrabCutModes */ public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount, int mode) { if (img != null) img.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (bgdModel != null) bgdModel.ThrowIfDisposed(); if (fgdModel != null) fgdModel.ThrowIfDisposed(); imgproc_Imgproc_grabCut_10(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount, mode); } /** * Runs the GrabCut algorithm. * * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). * * param img Input 8-bit 3-channel image. * param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses. * param rect ROI containing a segmented object. The pixels outside of the ROI are marked as * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT . * param bgdModel Temporary array for the background model. Do not modify it while you are * processing the same image. * param fgdModel Temporary arrays for the foreground model. Do not modify it while you are * processing the same image. * param iterCount Number of iterations the algorithm should make before returning the result. Note * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or * mode==GC_EVAL . */ public static void grabCut(Mat img, Mat mask, Rect rect, Mat bgdModel, Mat fgdModel, int iterCount) { if (img != null) img.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); if (bgdModel != null) bgdModel.ThrowIfDisposed(); if (fgdModel != null) fgdModel.ThrowIfDisposed(); imgproc_Imgproc_grabCut_11(img.nativeObj, mask.nativeObj, rect.x, rect.y, rect.width, rect.height, bgdModel.nativeObj, fgdModel.nativeObj, iterCount); } // // C++: void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) // /** * Calculates the distance to the closest zero pixel for each pixel of the source image. * * The function cv::distanceTransform calculates the approximate or precise distance from every binary * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. * * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library. * * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, * diagonal, or knight's move (the latest is available for a \(5\times 5\) mask). The overall * distance is calculated as a sum of these basic distances. Since the distance function should be * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all * the diagonal shifts must have the same cost (denoted as {code b}), and all knight's moves must have the * same cost (denoted as {code c}). For the #DIST_C and #DIST_L1 types, the distance is calculated * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a * relative error (a \(5\times 5\) mask gives more accurate results). For {code a},{code b}, and {code c}, OpenCV * uses the values suggested in the original paper: *
    *
  • * DIST_L1: {code a = 1, b = 2} *
  • *
  • * DIST_L2: *
      *
    • * {code 3 x 3}: {code a=0.955, b=1.3693} *
    • *
    • * {code 5 x 5}: {code a=1, b=1.4, c=2.1969} *
    • *
    *
  • * DIST_C: {code a = 1, b = 1} *
  • *
* * Typically, for a fast, coarse distance estimation #DIST_L2, a \(3\times 3\) mask is used. For a * more accurate distance estimation #DIST_L2, a \(5\times 5\) mask or the precise algorithm is used. * Note that both the precise and the approximate algorithms are linear on the number of pixels. * * This variant of the function does not only compute the minimum distance for each pixel \((x, y)\) * but also identifies the nearest connected component consisting of zero pixels * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the * component/pixel is stored in {code labels(x, y)}. When labelType==#DIST_LABEL_CCOMP, the function * automatically finds connected components of zero pixels in the input image and marks them with * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and * marks all the zero pixels with distinct labels. * * In this mode, the complexity is still linear. That is, the function provides a very fast way to * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported * yet. * * param src 8-bit, single-channel (binary) source image. * param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, * single-channel image of the same size as src. * param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type * CV_32SC1 and the same size as src. * param distanceType Type of distance, see #DistanceTypes * param maskSize Size of the distance transform mask, see #DistanceTransformMasks. * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type, * the parameter is forced to 3 because a \(3\times 3\) mask gives the same result as \(5\times * 5\) or any larger aperture. * param labelType Type of the label array to build, see #DistanceTransformLabelTypes. */ public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize, int labelType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); imgproc_Imgproc_distanceTransformWithLabels_10(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize, labelType); } /** * Calculates the distance to the closest zero pixel for each pixel of the source image. * * The function cv::distanceTransform calculates the approximate or precise distance from every binary * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. * * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library. * * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, * diagonal, or knight's move (the latest is available for a \(5\times 5\) mask). The overall * distance is calculated as a sum of these basic distances. Since the distance function should be * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all * the diagonal shifts must have the same cost (denoted as {code b}), and all knight's moves must have the * same cost (denoted as {code c}). For the #DIST_C and #DIST_L1 types, the distance is calculated * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a * relative error (a \(5\times 5\) mask gives more accurate results). For {code a},{code b}, and {code c}, OpenCV * uses the values suggested in the original paper: *
    *
  • * DIST_L1: {code a = 1, b = 2} *
  • *
  • * DIST_L2: *
      *
    • * {code 3 x 3}: {code a=0.955, b=1.3693} *
    • *
    • * {code 5 x 5}: {code a=1, b=1.4, c=2.1969} *
    • *
    *
  • * DIST_C: {code a = 1, b = 1} *
  • *
* * Typically, for a fast, coarse distance estimation #DIST_L2, a \(3\times 3\) mask is used. For a * more accurate distance estimation #DIST_L2, a \(5\times 5\) mask or the precise algorithm is used. * Note that both the precise and the approximate algorithms are linear on the number of pixels. * * This variant of the function does not only compute the minimum distance for each pixel \((x, y)\) * but also identifies the nearest connected component consisting of zero pixels * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the * component/pixel is stored in {code labels(x, y)}. When labelType==#DIST_LABEL_CCOMP, the function * automatically finds connected components of zero pixels in the input image and marks them with * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and * marks all the zero pixels with distinct labels. * * In this mode, the complexity is still linear. That is, the function provides a very fast way to * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported * yet. * * param src 8-bit, single-channel (binary) source image. * param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, * single-channel image of the same size as src. * param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type * CV_32SC1 and the same size as src. * param distanceType Type of distance, see #DistanceTypes * param maskSize Size of the distance transform mask, see #DistanceTransformMasks. * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type, * the parameter is forced to 3 because a \(3\times 3\) mask gives the same result as \(5\times * 5\) or any larger aperture. */ public static void distanceTransformWithLabels(Mat src, Mat dst, Mat labels, int distanceType, int maskSize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); imgproc_Imgproc_distanceTransformWithLabels_11(src.nativeObj, dst.nativeObj, labels.nativeObj, distanceType, maskSize); } // // C++: void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F) // /** * * param src 8-bit, single-channel (binary) source image. * param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, * single-channel image of the same size as src . * param distanceType Type of distance, see #DistanceTypes * param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \(3\times 3\) mask gives * the same result as \(5\times 5\) or any larger aperture. * param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for * the first variant of the function and distanceType == #DIST_L1. */ public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize, int dstType) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_distanceTransform_10(src.nativeObj, dst.nativeObj, distanceType, maskSize, dstType); } /** * * param src 8-bit, single-channel (binary) source image. * param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, * single-channel image of the same size as src . * param distanceType Type of distance, see #DistanceTypes * param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \(3\times 3\) mask gives * the same result as \(5\times 5\) or any larger aperture. * the first variant of the function and distanceType == #DIST_L1. */ public static void distanceTransform(Mat src, Mat dst, int distanceType, int maskSize) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_distanceTransform_11(src.nativeObj, dst.nativeObj, distanceType, maskSize); } // // C++: int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) // /** * Fills a connected component with the given color. * * The function cv::floodFill fills a connected component starting from the seed point with the specified * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The * pixel at \((x,y)\) is considered to belong to the repainted domain if: * *
    *
  • * in case of a grayscale image and floating range * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a grayscale image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a color image and floating range * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\) * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\) *
  • *
* * *
    *
  • * in case of a color image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\) * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\) *
  • *
* * * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the * component. That is, to be added to the connected component, a color/brightness of the pixel should * be close enough to: *
    *
  • * Color/brightness of one of its neighbors that already belong to the connected component in case * of a floating range. *
  • *
  • * Color/brightness of the seed point in case of a fixed range. *
  • *
* * Use these functions to either mark a connected component with the specified color in-place, or build * a mask and then extract the contour, or copy the region to another image, and so on. * * param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See * the details below. * param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an * input and output parameter, you must take responsibility of initializing it. * Flood-filling cannot go across non-zero pixels in the input mask. For example, * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags * as described below. Additionally, the function fills the border of the mask with ones to simplify * internal processing. It is therefore possible to use the same mask in multiple calls to the function * to make sure the filled areas do not overlap. * param seedPoint Starting point. * param newVal New value of the repainted domain pixels. * param loDiff Maximal lower brightness/color difference between the currently observed pixel and * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param upDiff Maximal upper brightness/color difference between the currently observed pixel and * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param rect Optional output parameter set by the function to the minimum bounding rectangle of the * repainted domain. * param flags Operation flags. The first 8 bits contain a connectivity value. The default value of * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill * the mask (the default value is 1). For example, 4 | ( 255 << 8 ) will consider 4 nearest * neighbours and fill the mask with a value of 255. The following additional options occupy higher * bits and therefore may be further combined with the connectivity and mask fill values using * bit-wise or (|), see #FloodFillFlags. * * Note: Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the * pixel \((x+1, y+1)\) in the mask . * * SEE: findContours * return automatically generated */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff, int flags) { if (image != null) image.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); double[] rect_out = new double[4]; int retVal = imgproc_Imgproc_floodFill_10(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3], flags); if (rect != null) { rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } return retVal; } /** * Fills a connected component with the given color. * * The function cv::floodFill fills a connected component starting from the seed point with the specified * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The * pixel at \((x,y)\) is considered to belong to the repainted domain if: * *
    *
  • * in case of a grayscale image and floating range * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a grayscale image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a color image and floating range * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\) * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\) *
  • *
* * *
    *
  • * in case of a color image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\) * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\) *
  • *
* * * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the * component. That is, to be added to the connected component, a color/brightness of the pixel should * be close enough to: *
    *
  • * Color/brightness of one of its neighbors that already belong to the connected component in case * of a floating range. *
  • *
  • * Color/brightness of the seed point in case of a fixed range. *
  • *
* * Use these functions to either mark a connected component with the specified color in-place, or build * a mask and then extract the contour, or copy the region to another image, and so on. * * param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See * the details below. * param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an * input and output parameter, you must take responsibility of initializing it. * Flood-filling cannot go across non-zero pixels in the input mask. For example, * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags * as described below. Additionally, the function fills the border of the mask with ones to simplify * internal processing. It is therefore possible to use the same mask in multiple calls to the function * to make sure the filled areas do not overlap. * param seedPoint Starting point. * param newVal New value of the repainted domain pixels. * param loDiff Maximal lower brightness/color difference between the currently observed pixel and * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param upDiff Maximal upper brightness/color difference between the currently observed pixel and * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param rect Optional output parameter set by the function to the minimum bounding rectangle of the * repainted domain. * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill * the mask (the default value is 1). For example, 4 | ( 255 << 8 ) will consider 4 nearest * neighbours and fill the mask with a value of 255. The following additional options occupy higher * bits and therefore may be further combined with the connectivity and mask fill values using * bit-wise or (|), see #FloodFillFlags. * * Note: Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the * pixel \((x+1, y+1)\) in the mask . * * SEE: findContours * return automatically generated */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff, Scalar upDiff) { if (image != null) image.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); double[] rect_out = new double[4]; int retVal = imgproc_Imgproc_floodFill_11(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3], upDiff.val[0], upDiff.val[1], upDiff.val[2], upDiff.val[3]); if (rect != null) { rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } return retVal; } /** * Fills a connected component with the given color. * * The function cv::floodFill fills a connected component starting from the seed point with the specified * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The * pixel at \((x,y)\) is considered to belong to the repainted domain if: * *
    *
  • * in case of a grayscale image and floating range * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a grayscale image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a color image and floating range * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\) * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\) *
  • *
* * *
    *
  • * in case of a color image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\) * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\) *
  • *
* * * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the * component. That is, to be added to the connected component, a color/brightness of the pixel should * be close enough to: *
    *
  • * Color/brightness of one of its neighbors that already belong to the connected component in case * of a floating range. *
  • *
  • * Color/brightness of the seed point in case of a fixed range. *
  • *
* * Use these functions to either mark a connected component with the specified color in-place, or build * a mask and then extract the contour, or copy the region to another image, and so on. * * param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See * the details below. * param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an * input and output parameter, you must take responsibility of initializing it. * Flood-filling cannot go across non-zero pixels in the input mask. For example, * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags * as described below. Additionally, the function fills the border of the mask with ones to simplify * internal processing. It is therefore possible to use the same mask in multiple calls to the function * to make sure the filled areas do not overlap. * param seedPoint Starting point. * param newVal New value of the repainted domain pixels. * param loDiff Maximal lower brightness/color difference between the currently observed pixel and * one of its neighbors belonging to the component, or a seed pixel being added to the component. * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param rect Optional output parameter set by the function to the minimum bounding rectangle of the * repainted domain. * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill * the mask (the default value is 1). For example, 4 | ( 255 << 8 ) will consider 4 nearest * neighbours and fill the mask with a value of 255. The following additional options occupy higher * bits and therefore may be further combined with the connectivity and mask fill values using * bit-wise or (|), see #FloodFillFlags. * * Note: Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the * pixel \((x+1, y+1)\) in the mask . * * SEE: findContours * return automatically generated */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect, Scalar loDiff) { if (image != null) image.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); double[] rect_out = new double[4]; int retVal = imgproc_Imgproc_floodFill_12(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out, loDiff.val[0], loDiff.val[1], loDiff.val[2], loDiff.val[3]); if (rect != null) { rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } return retVal; } /** * Fills a connected component with the given color. * * The function cv::floodFill fills a connected component starting from the seed point with the specified * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The * pixel at \((x,y)\) is considered to belong to the repainted domain if: * *
    *
  • * in case of a grayscale image and floating range * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a grayscale image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a color image and floating range * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\) * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\) *
  • *
* * *
    *
  • * in case of a color image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\) * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\) *
  • *
* * * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the * component. That is, to be added to the connected component, a color/brightness of the pixel should * be close enough to: *
    *
  • * Color/brightness of one of its neighbors that already belong to the connected component in case * of a floating range. *
  • *
  • * Color/brightness of the seed point in case of a fixed range. *
  • *
* * Use these functions to either mark a connected component with the specified color in-place, or build * a mask and then extract the contour, or copy the region to another image, and so on. * * param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See * the details below. * param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an * input and output parameter, you must take responsibility of initializing it. * Flood-filling cannot go across non-zero pixels in the input mask. For example, * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags * as described below. Additionally, the function fills the border of the mask with ones to simplify * internal processing. It is therefore possible to use the same mask in multiple calls to the function * to make sure the filled areas do not overlap. * param seedPoint Starting point. * param newVal New value of the repainted domain pixels. * one of its neighbors belonging to the component, or a seed pixel being added to the component. * one of its neighbors belonging to the component, or a seed pixel being added to the component. * param rect Optional output parameter set by the function to the minimum bounding rectangle of the * repainted domain. * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill * the mask (the default value is 1). For example, 4 | ( 255 << 8 ) will consider 4 nearest * neighbours and fill the mask with a value of 255. The following additional options occupy higher * bits and therefore may be further combined with the connectivity and mask fill values using * bit-wise or (|), see #FloodFillFlags. * * Note: Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the * pixel \((x+1, y+1)\) in the mask . * * SEE: findContours * return automatically generated */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal, Rect rect) { if (image != null) image.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); double[] rect_out = new double[4]; int retVal = imgproc_Imgproc_floodFill_13(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3], rect_out); if (rect != null) { rect.x = (int)rect_out[0]; rect.y = (int)rect_out[1]; rect.width = (int)rect_out[2]; rect.height = (int)rect_out[3]; } return retVal; } /** * Fills a connected component with the given color. * * The function cv::floodFill fills a connected component starting from the seed point with the specified * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The * pixel at \((x,y)\) is considered to belong to the repainted domain if: * *
    *
  • * in case of a grayscale image and floating range * \(\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a grayscale image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\) *
  • *
* * *
    *
  • * in case of a color image and floating range * \(\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\) * \(\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\) *
  • *
* * *
    *
  • * in case of a color image and fixed range * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\) * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\) * and * \(\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\) *
  • *
* * * where \(src(x',y')\) is the value of one of pixel neighbors that is already known to belong to the * component. That is, to be added to the connected component, a color/brightness of the pixel should * be close enough to: *
    *
  • * Color/brightness of one of its neighbors that already belong to the connected component in case * of a floating range. *
  • *
  • * Color/brightness of the seed point in case of a fixed range. *
  • *
* * Use these functions to either mark a connected component with the specified color in-place, or build * a mask and then extract the contour, or copy the region to another image, and so on. * * param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See * the details below. * param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an * input and output parameter, you must take responsibility of initializing it. * Flood-filling cannot go across non-zero pixels in the input mask. For example, * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags * as described below. Additionally, the function fills the border of the mask with ones to simplify * internal processing. It is therefore possible to use the same mask in multiple calls to the function * to make sure the filled areas do not overlap. * param seedPoint Starting point. * param newVal New value of the repainted domain pixels. * one of its neighbors belonging to the component, or a seed pixel being added to the component. * one of its neighbors belonging to the component, or a seed pixel being added to the component. * repainted domain. * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill * the mask (the default value is 1). For example, 4 | ( 255 << 8 ) will consider 4 nearest * neighbours and fill the mask with a value of 255. The following additional options occupy higher * bits and therefore may be further combined with the connectivity and mask fill values using * bit-wise or (|), see #FloodFillFlags. * * Note: Since the mask is larger than the filled image, a pixel \((x, y)\) in image corresponds to the * pixel \((x+1, y+1)\) in the mask . * * SEE: findContours * return automatically generated */ public static int floodFill(Mat image, Mat mask, Point seedPoint, Scalar newVal) { if (image != null) image.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); return imgproc_Imgproc_floodFill_14(image.nativeObj, mask.nativeObj, seedPoint.x, seedPoint.y, newVal.val[0], newVal.val[1], newVal.val[2], newVal.val[3]); } // // C++: void cv::blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat& dst) // /** * * * variant without {code mask} parameter * param src1 automatically generated * param src2 automatically generated * param weights1 automatically generated * param weights2 automatically generated * param dst automatically generated */ public static void blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat dst) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (weights1 != null) weights1.ThrowIfDisposed(); if (weights2 != null) weights2.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_blendLinear_10(src1.nativeObj, src2.nativeObj, weights1.nativeObj, weights2.nativeObj, dst.nativeObj); } // // C++: void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) // /** * Converts an image from one color space to another. * * The function converts an input image from one color space to another. In case of a transformation * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. * * The conventional ranges for R, G, and B channel values are: *
    *
  • * 0 to 255 for CV_8U images *
  • *
  • * 0 to 65535 for CV_16U images *
  • *
  • * 0 to 1 for CV_32F images *
  • *
* * In case of linear transformations, the range does not matter. But in case of a non-linear * transformation, an input RGB image should be normalized to the proper value range to get the correct * results, for example, for RGB \(\rightarrow\) L\*u\*v\* transformation. For example, if you have a * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor , * you need first to scale the image down: * * img *= 1./255; * cvtColor(img, img, COLOR_BGR2Luv); * * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many * applications, this will not be noticeable but it is recommended to use 32-bit images in applications * that need the full range of colors or that convert an image before an operation and then convert * back. * * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. * * param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision * floating-point. * param dst output image of the same size and depth as src. * param code color space conversion code (see #ColorConversionCodes). * param dstCn number of channels in the destination image; if the parameter is 0, the number of the * channels is derived automatically from src and code. * * SEE: REF: imgproc_color_conversions */ public static void cvtColor(Mat src, Mat dst, int code, int dstCn) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cvtColor_10(src.nativeObj, dst.nativeObj, code, dstCn); } /** * Converts an image from one color space to another. * * The function converts an input image from one color space to another. In case of a transformation * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. * * The conventional ranges for R, G, and B channel values are: *
    *
  • * 0 to 255 for CV_8U images *
  • *
  • * 0 to 65535 for CV_16U images *
  • *
  • * 0 to 1 for CV_32F images *
  • *
* * In case of linear transformations, the range does not matter. But in case of a non-linear * transformation, an input RGB image should be normalized to the proper value range to get the correct * results, for example, for RGB \(\rightarrow\) L\*u\*v\* transformation. For example, if you have a * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor , * you need first to scale the image down: * * img *= 1./255; * cvtColor(img, img, COLOR_BGR2Luv); * * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many * applications, this will not be noticeable but it is recommended to use 32-bit images in applications * that need the full range of colors or that convert an image before an operation and then convert * back. * * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. * * param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision * floating-point. * param dst output image of the same size and depth as src. * param code color space conversion code (see #ColorConversionCodes). * channels is derived automatically from src and code. * * SEE: REF: imgproc_color_conversions */ public static void cvtColor(Mat src, Mat dst, int code) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cvtColor_11(src.nativeObj, dst.nativeObj, code); } // // C++: void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code) // /** * Converts an image from one color space to another where the source image is * stored in two planes. * * This function only supports YUV420 to RGB conversion as of now. * *
    *
  • * #COLOR_YUV2BGR_NV12 *
  • *
  • * #COLOR_YUV2RGB_NV12 *
  • *
  • * #COLOR_YUV2BGRA_NV12 *
  • *
  • * #COLOR_YUV2RGBA_NV12 *
  • *
  • * #COLOR_YUV2BGR_NV21 *
  • *
  • * #COLOR_YUV2RGB_NV21 *
  • *
  • * #COLOR_YUV2BGRA_NV21 *
  • *
  • * #COLOR_YUV2RGBA_NV21 *
  • *
* param src1 automatically generated * param src2 automatically generated * param dst automatically generated * param code automatically generated */ public static void cvtColorTwoPlane(Mat src1, Mat src2, Mat dst, int code) { if (src1 != null) src1.ThrowIfDisposed(); if (src2 != null) src2.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_cvtColorTwoPlane_10(src1.nativeObj, src2.nativeObj, dst.nativeObj, code); } // // C++: void cv::demosaicing(Mat src, Mat& dst, int code, int dstCn = 0) // /** * main function for all demosaicing processes * * param src input image: 8-bit unsigned or 16-bit unsigned. * param dst output image of the same size and depth as src. * param code Color space conversion code (see the description below). * param dstCn number of channels in the destination image; if the parameter is 0, the number of the * channels is derived automatically from src and code. * * The function can do the following transformations: * *
    *
  • * Demosaicing using bilinear interpolation *
  • *
* * #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR * * #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY * *
    *
  • * Demosaicing using Variable Number of Gradients. *
  • *
* * #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG * *
    *
  • * Edge-Aware Demosaicing. *
  • *
* * #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA * *
    *
  • * Demosaicing with alpha channel *
  • *
* * #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA * * SEE: cvtColor */ public static void demosaicing(Mat src, Mat dst, int code, int dstCn) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_demosaicing_10(src.nativeObj, dst.nativeObj, code, dstCn); } /** * main function for all demosaicing processes * * param src input image: 8-bit unsigned or 16-bit unsigned. * param dst output image of the same size and depth as src. * param code Color space conversion code (see the description below). * channels is derived automatically from src and code. * * The function can do the following transformations: * *
    *
  • * Demosaicing using bilinear interpolation *
  • *
* * #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR * * #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY * *
    *
  • * Demosaicing using Variable Number of Gradients. *
  • *
* * #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG * *
    *
  • * Edge-Aware Demosaicing. *
  • *
* * #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA * *
    *
  • * Demosaicing with alpha channel *
  • *
* * #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA * * SEE: cvtColor */ public static void demosaicing(Mat src, Mat dst, int code) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_demosaicing_11(src.nativeObj, dst.nativeObj, code); } // // C++: Moments cv::moments(Mat array, bool binaryImage = false) // /** * Calculates all of the moments up to the third order of a polygon or rasterized shape. * * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The * results are returned in the structure cv::Moments. * * param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( * \(1 \times N\) or \(N \times 1\) ) of 2D points (Point or Point2f ). * param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is * used for images only. * return moments. * * Note: Only applicable to contour moments calculations from Python bindings: Note that the numpy * type for the input array should be either np.int32 or np.float32. * * SEE: contourArea, arcLength */ public static Moments moments(Mat array, bool binaryImage) { if (array != null) array.ThrowIfDisposed(); double[] tmpArray = new double[10]; imgproc_Imgproc_moments_10(array.nativeObj, binaryImage, tmpArray); Moments retVal = new Moments(tmpArray); return retVal; } /** * Calculates all of the moments up to the third order of a polygon or rasterized shape. * * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The * results are returned in the structure cv::Moments. * * param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( * \(1 \times N\) or \(N \times 1\) ) of 2D points (Point or Point2f ). * used for images only. * return moments. * * Note: Only applicable to contour moments calculations from Python bindings: Note that the numpy * type for the input array should be either np.int32 or np.float32. * * SEE: contourArea, arcLength */ public static Moments moments(Mat array) { if (array != null) array.ThrowIfDisposed(); double[] tmpArray = new double[10]; imgproc_Imgproc_moments_11(array.nativeObj, tmpArray); Moments retVal = new Moments(tmpArray); return retVal; } // // C++: void cv::HuMoments(Moments m, Mat& hu) // public static void HuMoments(Moments m, Mat hu) { if (hu != null) hu.ThrowIfDisposed(); imgproc_Imgproc_HuMoments_10(m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03, hu.nativeObj); } // // C++: void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat()) // /** * Compares a template against overlapped image regions. * * The function slides through image , compares the overlapped patches of size \(w \times h\) against * templ using the specified method and stores the comparison results in result . #TemplateMatchModes * describes the formulae for the available comparison methods ( \(I\) denotes image, \(T\) * template, \(R\) result, \(M\) the optional mask ). The summation is done over template and/or * the image patch: \(x' = 0...w-1, y' = 0...h-1\) * * After the function finishes the comparison, the best matches can be found as global minimums (when * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in * the denominator is done over all of the channels and separate mean values are used for each channel. * That is, the function can take a color template and a color image. The result will still be a * single-channel image, which is easier to analyze. * * param image Image where the search is running. It must be 8-bit or 32-bit floating-point. * param templ Searched template. It must be not greater than the source image and have the same * data type. * param result Map of comparison results. It must be single-channel 32-bit floating-point. If image * is \(W \times H\) and templ is \(w \times h\) , then result is \((W-w+1) \times (H-h+1)\) . * param method Parameter specifying the comparison method, see #TemplateMatchModes * param mask Optional mask. It must have the same size as templ. It must either have the same number * of channels as template or only one channel, which is then used for all template and * image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask, * meaning only elements where mask is nonzero are used and are kept unchanged independent * of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are * used as weights. The exact formulas are documented in #TemplateMatchModes. */ public static void matchTemplate(Mat image, Mat templ, Mat result, int method, Mat mask) { if (image != null) image.ThrowIfDisposed(); if (templ != null) templ.ThrowIfDisposed(); if (result != null) result.ThrowIfDisposed(); if (mask != null) mask.ThrowIfDisposed(); imgproc_Imgproc_matchTemplate_10(image.nativeObj, templ.nativeObj, result.nativeObj, method, mask.nativeObj); } /** * Compares a template against overlapped image regions. * * The function slides through image , compares the overlapped patches of size \(w \times h\) against * templ using the specified method and stores the comparison results in result . #TemplateMatchModes * describes the formulae for the available comparison methods ( \(I\) denotes image, \(T\) * template, \(R\) result, \(M\) the optional mask ). The summation is done over template and/or * the image patch: \(x' = 0...w-1, y' = 0...h-1\) * * After the function finishes the comparison, the best matches can be found as global minimums (when * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in * the denominator is done over all of the channels and separate mean values are used for each channel. * That is, the function can take a color template and a color image. The result will still be a * single-channel image, which is easier to analyze. * * param image Image where the search is running. It must be 8-bit or 32-bit floating-point. * param templ Searched template. It must be not greater than the source image and have the same * data type. * param result Map of comparison results. It must be single-channel 32-bit floating-point. If image * is \(W \times H\) and templ is \(w \times h\) , then result is \((W-w+1) \times (H-h+1)\) . * param method Parameter specifying the comparison method, see #TemplateMatchModes * of channels as template or only one channel, which is then used for all template and * image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask, * meaning only elements where mask is nonzero are used and are kept unchanged independent * of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are * used as weights. The exact formulas are documented in #TemplateMatchModes. */ public static void matchTemplate(Mat image, Mat templ, Mat result, int method) { if (image != null) image.ThrowIfDisposed(); if (templ != null) templ.ThrowIfDisposed(); if (result != null) result.ThrowIfDisposed(); imgproc_Imgproc_matchTemplate_11(image.nativeObj, templ.nativeObj, result.nativeObj, method); } // // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype) // /** * computes the connected components labeled image of boolean image * * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 * represents the background label. ltype specifies the output label image type, an important * consideration based on the total number of labels or alternatively the total number of pixels in * the source image. ccltype specifies the connected components labeling algorithm to use, currently * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces * a row major ordering of labels while Spaghetti and BBDT do not. * This function uses parallel version of the algorithms if at least one allowed * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * param ltype output image label type. Currently CV_32S and CV_16U are supported. * param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes). * return automatically generated */ public static int connectedComponentsWithAlgorithm(Mat image, Mat labels, int connectivity, int ltype, int ccltype) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponentsWithAlgorithm_10(image.nativeObj, labels.nativeObj, connectivity, ltype, ccltype); } // // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S) // /** * * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * param ltype output image label type. Currently CV_32S and CV_16U are supported. * return automatically generated */ public static int connectedComponents(Mat image, Mat labels, int connectivity, int ltype) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponents_10(image.nativeObj, labels.nativeObj, connectivity, ltype); } /** * * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * return automatically generated */ public static int connectedComponents(Mat image, Mat labels, int connectivity) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponents_11(image.nativeObj, labels.nativeObj, connectivity); } /** * * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * return automatically generated */ public static int connectedComponents(Mat image, Mat labels) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponents_12(image.nativeObj, labels.nativeObj); } // // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype) // /** * computes the connected components labeled image of boolean image and also produces a statistics output for each label * * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 * represents the background label. ltype specifies the output label image type, an important * consideration based on the total number of labels or alternatively the total number of pixels in * the source image. ccltype specifies the connected components labeling algorithm to use, currently * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces * a row major ordering of labels while Spaghetti and BBDT do not. * This function uses parallel version of the algorithms (statistics included) if at least one allowed * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs. * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param stats statistics output for each label, including the background label. * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. * param centroids centroid output for each label, including the background label. Centroids are * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * param ltype output image label type. Currently CV_32S and CV_16U are supported. * param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes). * return automatically generated */ public static int connectedComponentsWithStatsWithAlgorithm(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (stats != null) stats.ThrowIfDisposed(); if (centroids != null) centroids.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponentsWithStatsWithAlgorithm_10(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype, ccltype); } // // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S) // /** * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param stats statistics output for each label, including the background label. * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. * param centroids centroid output for each label, including the background label. Centroids are * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * param ltype output image label type. Currently CV_32S and CV_16U are supported. * return automatically generated */ public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (stats != null) stats.ThrowIfDisposed(); if (centroids != null) centroids.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponentsWithStats_10(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity, ltype); } /** * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param stats statistics output for each label, including the background label. * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. * param centroids centroid output for each label, including the background label. Centroids are * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. * param connectivity 8 or 4 for 8-way or 4-way connectivity respectively * return automatically generated */ public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids, int connectivity) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (stats != null) stats.ThrowIfDisposed(); if (centroids != null) centroids.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponentsWithStats_11(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj, connectivity); } /** * * param image the 8-bit single-channel image to be labeled * param labels destination labeled image * param stats statistics output for each label, including the background label. * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S. * param centroids centroid output for each label, including the background label. Centroids are * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. * return automatically generated */ public static int connectedComponentsWithStats(Mat image, Mat labels, Mat stats, Mat centroids) { if (image != null) image.ThrowIfDisposed(); if (labels != null) labels.ThrowIfDisposed(); if (stats != null) stats.ThrowIfDisposed(); if (centroids != null) centroids.ThrowIfDisposed(); return imgproc_Imgproc_connectedComponentsWithStats_12(image.nativeObj, labels.nativeObj, stats.nativeObj, centroids.nativeObj); } // // C++: void cv::findContours(Mat image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) // /** * Finds contours in a binary image. * * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the * OpenCV sample directory. * Note: Since opencv 3.2 source image is not modified by this function. * * param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold , * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one. * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). * param contours Detected contours. Each contour is stored as a vector of points (e.g. * std::vector<std::vector<cv::Point> >). * param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has * as many elements as the number of contours. For each i-th contour contours[i], the elements * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices * in contours of the next and previous contours at the same hierarchical level, the first child * contour and the parent contour, respectively. If for the contour i there are no next, previous, * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. * Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour. * param mode Contour retrieval mode, see #RetrievalModes * param method Contour approximation method, see #ContourApproximationModes * param offset Optional offset by which every contour point is shifted. This is useful if the * contours are extracted from the image ROI and then they should be analyzed in the whole image * context. */ public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method, Point offset) { if (image != null) image.ThrowIfDisposed(); if (hierarchy != null) hierarchy.ThrowIfDisposed(); Mat contours_mat = new Mat(); imgproc_Imgproc_findContours_10(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method, offset.x, offset.y); Converters.Mat_to_vector_vector_Point(contours_mat, contours); contours_mat.release(); } /** * Finds contours in a binary image. * * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the * OpenCV sample directory. * Note: Since opencv 3.2 source image is not modified by this function. * * param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold , * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one. * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). * param contours Detected contours. Each contour is stored as a vector of points (e.g. * std::vector<std::vector<cv::Point> >). * param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has * as many elements as the number of contours. For each i-th contour contours[i], the elements * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices * in contours of the next and previous contours at the same hierarchical level, the first child * contour and the parent contour, respectively. If for the contour i there are no next, previous, * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. * Note: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour. * param mode Contour retrieval mode, see #RetrievalModes * param method Contour approximation method, see #ContourApproximationModes * contours are extracted from the image ROI and then they should be analyzed in the whole image * context. */ public static void findContours(Mat image, List contours, Mat hierarchy, int mode, int method) { if (image != null) image.ThrowIfDisposed(); if (hierarchy != null) hierarchy.ThrowIfDisposed(); Mat contours_mat = new Mat(); imgproc_Imgproc_findContours_11(image.nativeObj, contours_mat.nativeObj, hierarchy.nativeObj, mode, method); Converters.Mat_to_vector_vector_Point(contours_mat, contours); contours_mat.release(); } // // C++: void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) // /** * Approximates a polygonal curve(s) with the specified precision. * * The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less * vertices so that the distance between them is less or equal to the specified precision. It uses the * Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm> * * param curve Input vector of a 2D point stored in std::vector or Mat * param approxCurve Result of the approximation. The type should match the type of the input curve. * param epsilon Parameter specifying the approximation accuracy. This is the maximum distance * between the original curve and its approximation. * param closed If true, the approximated curve is closed (its first and last vertices are * connected). Otherwise, it is not closed. */ public static void approxPolyDP(MatOfPoint2f curve, MatOfPoint2f approxCurve, double epsilon, bool closed) { if (curve != null) curve.ThrowIfDisposed(); if (approxCurve != null) approxCurve.ThrowIfDisposed(); Mat curve_mat = curve; Mat approxCurve_mat = approxCurve; imgproc_Imgproc_approxPolyDP_10(curve_mat.nativeObj, approxCurve_mat.nativeObj, epsilon, closed); } // // C++: double cv::arcLength(vector_Point2f curve, bool closed) // /** * Calculates a contour perimeter or a curve length. * * The function computes a curve length or a closed contour perimeter. * * param curve Input vector of 2D points, stored in std::vector or Mat. * param closed Flag indicating whether the curve is closed or not. * return automatically generated */ public static double arcLength(MatOfPoint2f curve, bool closed) { if (curve != null) curve.ThrowIfDisposed(); Mat curve_mat = curve; return imgproc_Imgproc_arcLength_10(curve_mat.nativeObj, closed); } // // C++: Rect cv::boundingRect(Mat array) // /** * Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image. * * The function calculates and returns the minimal up-right bounding rectangle for the specified point set or * non-zero pixels of gray-scale image. * * param array Input gray-scale image or 2D point set, stored in std::vector or Mat. * return automatically generated */ public static Rect boundingRect(Mat array) { if (array != null) array.ThrowIfDisposed(); double[] tmpArray = new double[4]; imgproc_Imgproc_boundingRect_10(array.nativeObj, tmpArray); Rect retVal = new Rect(tmpArray); return retVal; } // // C++: double cv::contourArea(Mat contour, bool oriented = false) // /** * Calculates a contour area. * * The function computes a contour area. Similarly to moments , the area is computed using the Green * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong * results for contours with self-intersections. * * Example: * * vector<Point> contour; * contour.push_back(Point2f(0, 0)); * contour.push_back(Point2f(10, 0)); * contour.push_back(Point2f(10, 10)); * contour.push_back(Point2f(5, 4)); * * double area0 = contourArea(contour); * vector<Point> approx; * approxPolyDP(contour, approx, 5, true); * double area1 = contourArea(approx); * * cout << "area0 =" << area0 << endl << * "area1 =" << area1 << endl << * "approx poly vertices" << approx.size() << endl; * * param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. * param oriented Oriented area flag. If it is true, the function returns a signed area value, * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can * determine orientation of a contour by taking the sign of an area. By default, the parameter is * false, which means that the absolute value is returned. * return automatically generated */ public static double contourArea(Mat contour, bool oriented) { if (contour != null) contour.ThrowIfDisposed(); return imgproc_Imgproc_contourArea_10(contour.nativeObj, oriented); } /** * Calculates a contour area. * * The function computes a contour area. Similarly to moments , the area is computed using the Green * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong * results for contours with self-intersections. * * Example: * * vector<Point> contour; * contour.push_back(Point2f(0, 0)); * contour.push_back(Point2f(10, 0)); * contour.push_back(Point2f(10, 10)); * contour.push_back(Point2f(5, 4)); * * double area0 = contourArea(contour); * vector<Point> approx; * approxPolyDP(contour, approx, 5, true); * double area1 = contourArea(approx); * * cout << "area0 =" << area0 << endl << * "area1 =" << area1 << endl << * "approx poly vertices" << approx.size() << endl; * * param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can * determine orientation of a contour by taking the sign of an area. By default, the parameter is * false, which means that the absolute value is returned. * return automatically generated */ public static double contourArea(Mat contour) { if (contour != null) contour.ThrowIfDisposed(); return imgproc_Imgproc_contourArea_11(contour.nativeObj); } // // C++: RotatedRect cv::minAreaRect(vector_Point2f points) // /** * Finds a rotated rectangle of the minimum area enclosing the input 2D point set. * * The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a * specified point set. Developer should keep in mind that the returned RotatedRect can contain negative * indices when data is close to the containing Mat element boundary. * * param points Input vector of 2D points, stored in std::vector<> or Mat * return automatically generated */ public static RotatedRect minAreaRect(MatOfPoint2f points) { if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; double[] tmpArray = new double[5]; imgproc_Imgproc_minAreaRect_10(points_mat.nativeObj, tmpArray); RotatedRect retVal = new RotatedRect(tmpArray); return retVal; } // // C++: void cv::boxPoints(RotatedRect box, Mat& points) // /** * Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. * * The function finds the four vertices of a rotated rectangle. This function is useful to draw the * rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please * visit the REF: tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information. * * param box The input rotated rectangle. It may be the output of REF: minAreaRect. * param points The output array of four vertices of rectangles. */ public static void boxPoints(RotatedRect box, Mat points) { if (points != null) points.ThrowIfDisposed(); imgproc_Imgproc_boxPoints_10(box.center.x, box.center.y, box.size.width, box.size.height, box.angle, points.nativeObj); } // // C++: void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) // /** * Finds a circle of the minimum area enclosing a 2D point set. * * The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. * * param points Input vector of 2D points, stored in std::vector<> or Mat * param center Output center of the circle. * param radius Output radius of the circle. */ public static void minEnclosingCircle(MatOfPoint2f points, Point center, float[] radius) { if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; double[] center_out = new double[2]; double[] radius_out = new double[1]; imgproc_Imgproc_minEnclosingCircle_10(points_mat.nativeObj, center_out, radius_out); if (center != null) { center.x = center_out[0]; center.y = center_out[1]; } if (radius != null) radius[0] = (float)radius_out[0]; } // // C++: double cv::minEnclosingTriangle(Mat points, Mat& triangle) // /** * Finds a triangle of minimum area enclosing a 2D point set and returns its area. * * The function finds a triangle of minimum area enclosing the given set of 2D points and returns its * area. The output for a given 2D point set is shown in the image below. 2D points are depicted in * red* and the enclosing triangle in *yellow*. * * ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png) * * The implementation of the algorithm is based on O'Rourke's CITE: ORourke86 and Klee and Laskowski's * CITE: KleeLaskowski85 papers. O'Rourke provides a \(\theta(n)\) algorithm for finding the minimal * enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function * takes a 2D point set as input an additional preprocessing step of computing the convex hull of the * 2D point set is required. The complexity of the #convexHull function is \(O(n log(n))\) which is higher * than \(\theta(n)\). Thus the overall complexity of the function is \(O(n log(n))\). * * param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector<> or Mat * param triangle Output vector of three 2D points defining the vertices of the triangle. The depth * of the OutputArray must be CV_32F. * return automatically generated */ public static double minEnclosingTriangle(Mat points, Mat triangle) { if (points != null) points.ThrowIfDisposed(); if (triangle != null) triangle.ThrowIfDisposed(); return imgproc_Imgproc_minEnclosingTriangle_10(points.nativeObj, triangle.nativeObj); } // // C++: double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter) // /** * Compares two shapes. * * The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments) * * param contour1 First contour or grayscale image. * param contour2 Second contour or grayscale image. * param method Comparison method, see #ShapeMatchModes * param parameter Method-specific parameter (not supported now). * return automatically generated */ public static double matchShapes(Mat contour1, Mat contour2, int method, double parameter) { if (contour1 != null) contour1.ThrowIfDisposed(); if (contour2 != null) contour2.ThrowIfDisposed(); return imgproc_Imgproc_matchShapes_10(contour1.nativeObj, contour2.nativeObj, method, parameter); } // // C++: void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) // /** * Finds the convex hull of a point set. * * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82 * that has *O(N logN)* complexity in the current implementation. * * param points Input 2D point set, stored in std::vector or Mat. * param hull Output convex hull. It is either an integer vector of indices or vector of points. In * the first case, the hull elements are 0-based indices of the convex hull points in the original * array (since the set of convex hull points is a subset of the original point set). In the second * case, hull elements are the convex hull points themselves. * param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing * to the right, and its Y axis pointing upwards. * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the * output array is std::vector, the flag is ignored, and the output depends on the type of the * vector: std::vector<int> implies returnPoints=false, std::vector<Point> implies * returnPoints=true. * * Note: {code points} and {code hull} should be different arrays, inplace processing isn't supported. * * Check REF: tutorial_hull "the corresponding tutorial" for more details. * * useful links: * * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/ */ public static void convexHull(MatOfPoint points, MatOfInt hull, bool clockwise) { if (points != null) points.ThrowIfDisposed(); if (hull != null) hull.ThrowIfDisposed(); Mat points_mat = points; Mat hull_mat = hull; imgproc_Imgproc_convexHull_10(points_mat.nativeObj, hull_mat.nativeObj, clockwise); } /** * Finds the convex hull of a point set. * * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82 * that has *O(N logN)* complexity in the current implementation. * * param points Input 2D point set, stored in std::vector or Mat. * param hull Output convex hull. It is either an integer vector of indices or vector of points. In * the first case, the hull elements are 0-based indices of the convex hull points in the original * array (since the set of convex hull points is a subset of the original point set). In the second * case, hull elements are the convex hull points themselves. * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing * to the right, and its Y axis pointing upwards. * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the * output array is std::vector, the flag is ignored, and the output depends on the type of the * vector: std::vector<int> implies returnPoints=false, std::vector<Point> implies * returnPoints=true. * * Note: {code points} and {code hull} should be different arrays, inplace processing isn't supported. * * Check REF: tutorial_hull "the corresponding tutorial" for more details. * * useful links: * * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/ */ public static void convexHull(MatOfPoint points, MatOfInt hull) { if (points != null) points.ThrowIfDisposed(); if (hull != null) hull.ThrowIfDisposed(); Mat points_mat = points; Mat hull_mat = hull; imgproc_Imgproc_convexHull_12(points_mat.nativeObj, hull_mat.nativeObj); } // // C++: void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) // /** * Finds the convexity defects of a contour. * * The figure below displays convexity defects of a hand contour: * * ![image](pics/defects.png) * * param contour Input contour. * param convexhull Convex hull obtained using convexHull that should contain indices of the contour * points that make the hull. * param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java * interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i): * (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices * in the original contour of the convexity defect beginning, end and the farthest point, and * fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the * farthest contour point and the hull. That is, to get the floating-point value of the depth will be * fixpt_depth/256.0. */ public static void convexityDefects(MatOfPoint contour, MatOfInt convexhull, MatOfInt4 convexityDefects) { if (contour != null) contour.ThrowIfDisposed(); if (convexhull != null) convexhull.ThrowIfDisposed(); if (convexityDefects != null) convexityDefects.ThrowIfDisposed(); Mat contour_mat = contour; Mat convexhull_mat = convexhull; Mat convexityDefects_mat = convexityDefects; imgproc_Imgproc_convexityDefects_10(contour_mat.nativeObj, convexhull_mat.nativeObj, convexityDefects_mat.nativeObj); } // // C++: bool cv::isContourConvex(vector_Point contour) // /** * Tests a contour convexity. * * The function tests whether the input contour is convex or not. The contour must be simple, that is, * without self-intersections. Otherwise, the function output is undefined. * * param contour Input vector of 2D points, stored in std::vector<> or Mat * return automatically generated */ public static bool isContourConvex(MatOfPoint contour) { if (contour != null) contour.ThrowIfDisposed(); Mat contour_mat = contour; return imgproc_Imgproc_isContourConvex_10(contour_mat.nativeObj); } // // C++: float cv::intersectConvexConvex(Mat p1, Mat p2, Mat& p12, bool handleNested = true) // /** * Finds intersection of two convex polygons * * param p1 First polygon * param p2 Second polygon * param p12 Output polygon describing the intersecting area * param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other. * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested. * * return Absolute value of area of intersecting polygon * * Note: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't. */ public static float intersectConvexConvex(Mat p1, Mat p2, Mat p12, bool handleNested) { if (p1 != null) p1.ThrowIfDisposed(); if (p2 != null) p2.ThrowIfDisposed(); if (p12 != null) p12.ThrowIfDisposed(); return imgproc_Imgproc_intersectConvexConvex_10(p1.nativeObj, p2.nativeObj, p12.nativeObj, handleNested); } /** * Finds intersection of two convex polygons * * param p1 First polygon * param p2 Second polygon * param p12 Output polygon describing the intersecting area * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested. * * return Absolute value of area of intersecting polygon * * Note: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't. */ public static float intersectConvexConvex(Mat p1, Mat p2, Mat p12) { if (p1 != null) p1.ThrowIfDisposed(); if (p2 != null) p2.ThrowIfDisposed(); if (p12 != null) p12.ThrowIfDisposed(); return imgproc_Imgproc_intersectConvexConvex_11(p1.nativeObj, p2.nativeObj, p12.nativeObj); } // // C++: RotatedRect cv::fitEllipse(vector_Point2f points) // /** * Fits an ellipse around a set of 2D points. * * The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of * all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by CITE: Fitzgibbon95 * is used. Developer should keep in mind that it is possible that the returned * ellipse/rotatedRect data contains negative indices, due to the data points being close to the * border of the containing Mat element. * * param points Input 2D point set, stored in std::vector<> or Mat * return automatically generated */ public static RotatedRect fitEllipse(MatOfPoint2f points) { if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; double[] tmpArray = new double[5]; imgproc_Imgproc_fitEllipse_10(points_mat.nativeObj, tmpArray); RotatedRect retVal = new RotatedRect(tmpArray); return retVal; } // // C++: RotatedRect cv::fitEllipseAMS(Mat points) // /** * Fits an ellipse around a set of 2D points. * * The function calculates the ellipse that fits a set of 2D points. * It returns the rotated rectangle in which the ellipse is inscribed. * The Approximate Mean Square (AMS) proposed by CITE: Taubin1991 is used. * * For an ellipse, this basis set is \( \chi= \left(x^2, x y, y^2, x, y, 1\right) \), * which is a set of six free coefficients \( A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \). * However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \( (a,b) \), * the position \( (x_0,y_0) \), and the orientation \( \theta \). This is because the basis set includes lines, * quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. * If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used. * The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves * by imposing the condition that \( A^T ( D_x^T D_x + D_y^T D_y) A = 1 \) where * the matrices \( Dx \) and \( Dy \) are the partial derivatives of the design matrix \( D \) with * respect to x and y. The matrices are formed row by row applying the following to * each of the points in the set: * \(align*}{ * D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} & * D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} & * D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\} * \) * The AMS method minimizes the cost function * \(equation*}{ * \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T } * \) * * The minimum cost is found by solving the generalized eigenvalue problem. * * \(equation*}{ * D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A * \) * * param points Input 2D point set, stored in std::vector<> or Mat * return automatically generated */ public static RotatedRect fitEllipseAMS(Mat points) { if (points != null) points.ThrowIfDisposed(); double[] tmpArray = new double[5]; imgproc_Imgproc_fitEllipseAMS_10(points.nativeObj, tmpArray); RotatedRect retVal = new RotatedRect(tmpArray); return retVal; } // // C++: RotatedRect cv::fitEllipseDirect(Mat points) // /** * Fits an ellipse around a set of 2D points. * * The function calculates the ellipse that fits a set of 2D points. * It returns the rotated rectangle in which the ellipse is inscribed. * The Direct least square (Direct) method by CITE: Fitzgibbon1999 is used. * * For an ellipse, this basis set is \( \chi= \left(x^2, x y, y^2, x, y, 1\right) \), * which is a set of six free coefficients \( A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \). * However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \( (a,b) \), * the position \( (x_0,y_0) \), and the orientation \( \theta \). This is because the basis set includes lines, * quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits. * The Direct method confines the fit to ellipses by ensuring that \( 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \). * The condition imposed is that \( 4 A_{xx} A_{yy}- A_{xy}^2=1 \) which satisfies the inequality * and as the coefficients can be arbitrarily scaled is not overly restrictive. * * \(equation*}{ * \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix} * 0 & 0 & 2 & 0 & 0 & 0 \\ * 0 & -1 & 0 & 0 & 0 & 0 \\ * 2 & 0 & 0 & 0 & 0 & 0 \\ * 0 & 0 & 0 & 0 & 0 & 0 \\ * 0 & 0 & 0 & 0 & 0 & 0 \\ * 0 & 0 & 0 & 0 & 0 & 0 * \end{matrix} \right) * \) * * The minimum cost is found by solving the generalized eigenvalue problem. * * \(equation*}{ * D^T D A = \lambda \left( C\right) A * \) * * The system produces only one positive eigenvalue \( \lambda\) which is chosen as the solution * with its eigenvector \(\mathbf{u}\). These are used to find the coefficients * * \(equation*}{ * A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u} * \) * The scaling factor guarantees that \(A^T C A =1\). * * param points Input 2D point set, stored in std::vector<> or Mat * return automatically generated */ public static RotatedRect fitEllipseDirect(Mat points) { if (points != null) points.ThrowIfDisposed(); double[] tmpArray = new double[5]; imgproc_Imgproc_fitEllipseDirect_10(points.nativeObj, tmpArray); RotatedRect retVal = new RotatedRect(tmpArray); return retVal; } // // C++: void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) // /** * Fits a line to a 2D or 3D point set. * * The function fitLine fits a line to a 2D or 3D point set by minimizing \(\sum_i \rho(r_i)\) where * \(r_i\) is a distance between the \(i^{th}\) point, the line and \(\rho(r)\) is a distance function, one * of the following: *
    *
  • * DIST_L2 * \(\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\) *
  • *
  • * DIST_L1 * \(\rho (r) = r\) *
  • *
  • * DIST_L12 * \(\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\) *
  • *
  • * DIST_FAIR * \(\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\) *
  • *
  • * DIST_WELSCH * \(\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\) *
  • *
  • * DIST_HUBER * \(\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\) *
  • *
* * The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique * that iteratively fits the line using the weighted least-squares algorithm. After each iteration the * weights \(w_i\) are adjusted to be inversely proportional to \(\rho(r_i)\) . * * param points Input vector of 2D or 3D points, stored in std::vector<> or Mat. * param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements * (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and * (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like * Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line * and (x0, y0, z0) is a point on the line. * param distType Distance used by the M-estimator, see #DistanceTypes * param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value * is chosen. * param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). * param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. */ public static void fitLine(Mat points, Mat line, int distType, double param, double reps, double aeps) { if (points != null) points.ThrowIfDisposed(); if (line != null) line.ThrowIfDisposed(); imgproc_Imgproc_fitLine_10(points.nativeObj, line.nativeObj, distType, param, reps, aeps); } // // C++: double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) // /** * Performs a point-in-contour test. * * The function determines whether the point is inside a contour, outside, or lies on an edge (or * coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) * value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. * Otherwise, the return value is a signed distance between the point and the nearest contour edge. * * See below a sample output of the function where each image pixel is tested against the contour: * * ![sample output](pics/pointpolygon.png) * * param contour Input contour. * param pt Point tested against the contour. * param measureDist If true, the function estimates the signed distance from the point to the * nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. * return automatically generated */ public static double pointPolygonTest(MatOfPoint2f contour, Point pt, bool measureDist) { if (contour != null) contour.ThrowIfDisposed(); Mat contour_mat = contour; return imgproc_Imgproc_pointPolygonTest_10(contour_mat.nativeObj, pt.x, pt.y, measureDist); } // // C++: int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion) // /** * Finds out if there is any intersection between two rotated rectangles. * * If there is then the vertices of the intersecting region are returned as well. * * Below are some examples of intersection configurations. The hatched pattern indicates the * intersecting region and the red vertices are returned by the function. * * ![intersection examples](pics/intersection.png) * * param rect1 First rectangle * param rect2 Second rectangle * param intersectingRegion The output array of the vertices of the intersecting region. It returns * at most 8 vertices. Stored as std::vector<cv::Point2f> or cv::Mat as Mx1 of type CV_32FC2. * return One of #RectanglesIntersectTypes */ public static int rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat intersectingRegion) { if (intersectingRegion != null) intersectingRegion.ThrowIfDisposed(); return imgproc_Imgproc_rotatedRectangleIntersection_10(rect1.center.x, rect1.center.y, rect1.size.width, rect1.size.height, rect1.angle, rect2.center.x, rect2.center.y, rect2.size.width, rect2.size.height, rect2.angle, intersectingRegion.nativeObj); } // // C++: Ptr_GeneralizedHoughBallard cv::createGeneralizedHoughBallard() // /** * Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it. * return automatically generated */ public static GeneralizedHoughBallard createGeneralizedHoughBallard() { return GeneralizedHoughBallard.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createGeneralizedHoughBallard_10())); } // // C++: Ptr_GeneralizedHoughGuil cv::createGeneralizedHoughGuil() // /** * Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it. * return automatically generated */ public static GeneralizedHoughGuil createGeneralizedHoughGuil() { return GeneralizedHoughGuil.__fromPtr__(DisposableObject.ThrowIfNullIntPtr(imgproc_Imgproc_createGeneralizedHoughGuil_10())); } // // C++: void cv::applyColorMap(Mat src, Mat& dst, int colormap) // /** * Applies a GNU Octave/MATLAB equivalent colormap on a given image. * * param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. * param dst The result is the colormapped source image. Note: Mat::create is called on dst. * param colormap The colormap to apply, see #ColormapTypes */ public static void applyColorMap(Mat src, Mat dst, int colormap) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); imgproc_Imgproc_applyColorMap_10(src.nativeObj, dst.nativeObj, colormap); } // // C++: void cv::applyColorMap(Mat src, Mat& dst, Mat userColor) // /** * Applies a user colormap on a given image. * * param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. * param dst The result is the colormapped source image. Note: Mat::create is called on dst. * param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256 */ public static void applyColorMap(Mat src, Mat dst, Mat userColor) { if (src != null) src.ThrowIfDisposed(); if (dst != null) dst.ThrowIfDisposed(); if (userColor != null) userColor.ThrowIfDisposed(); imgproc_Imgproc_applyColorMap_11(src.nativeObj, dst.nativeObj, userColor.nativeObj); } // // C++: void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * Draws a line segment connecting two points. * * The function line draws the line segment between pt1 and pt2 points in the image. The line is * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased * lines are drawn using Gaussian filtering. * * param img Image. * param pt1 First point of the line segment. * param pt2 Second point of the line segment. * param color Line color. * param thickness Line thickness. * param lineType Type of the line. See #LineTypes. * param shift Number of fractional bits in the point coordinates. */ public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_line_10(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * Draws a line segment connecting two points. * * The function line draws the line segment between pt1 and pt2 points in the image. The line is * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased * lines are drawn using Gaussian filtering. * * param img Image. * param pt1 First point of the line segment. * param pt2 Second point of the line segment. * param color Line color. * param thickness Line thickness. * param lineType Type of the line. See #LineTypes. */ public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_line_11(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws a line segment connecting two points. * * The function line draws the line segment between pt1 and pt2 points in the image. The line is * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased * lines are drawn using Gaussian filtering. * * param img Image. * param pt1 First point of the line segment. * param pt2 Second point of the line segment. * param color Line color. * param thickness Line thickness. */ public static void line(Mat img, Point pt1, Point pt2, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_line_12(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws a line segment connecting two points. * * The function line draws the line segment between pt1 and pt2 points in the image. The line is * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased * lines are drawn using Gaussian filtering. * * param img Image. * param pt1 First point of the line segment. * param pt2 Second point of the line segment. * param color Line color. */ public static void line(Mat img, Point pt1, Point pt2, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_line_13(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1) // /** * Draws an arrow segment pointing from the first point to the second one. * * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. * * param img Image. * param pt1 The point the arrow starts from. * param pt2 The point the arrow points to. * param color Line color. * param thickness Line thickness. * param line_type Type of the line. See #LineTypes * param shift Number of fractional bits in the point coordinates. * param tipLength The length of the arrow tip in relation to the arrow length */ public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift, double tipLength) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_arrowedLine_10(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift, tipLength); } /** * Draws an arrow segment pointing from the first point to the second one. * * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. * * param img Image. * param pt1 The point the arrow starts from. * param pt2 The point the arrow points to. * param color Line color. * param thickness Line thickness. * param line_type Type of the line. See #LineTypes * param shift Number of fractional bits in the point coordinates. */ public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_arrowedLine_11(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type, shift); } /** * Draws an arrow segment pointing from the first point to the second one. * * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. * * param img Image. * param pt1 The point the arrow starts from. * param pt2 The point the arrow points to. * param color Line color. * param thickness Line thickness. * param line_type Type of the line. See #LineTypes */ public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int line_type) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_arrowedLine_12(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, line_type); } /** * Draws an arrow segment pointing from the first point to the second one. * * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. * * param img Image. * param pt1 The point the arrow starts from. * param pt2 The point the arrow points to. * param color Line color. * param thickness Line thickness. */ public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_arrowedLine_13(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws an arrow segment pointing from the first point to the second one. * * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line. * * param img Image. * param pt1 The point the arrow starts from. * param pt2 The point the arrow points to. * param color Line color. */ public static void arrowedLine(Mat img, Point pt1, Point pt2, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_arrowedLine_14(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * Draws a simple, thick, or filled up-right rectangle. * * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners * are pt1 and pt2. * * param img Image. * param pt1 Vertex of the rectangle. * param pt2 Vertex of the rectangle opposite to pt1 . * param color Rectangle color or brightness (grayscale image). * param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, * mean that the function has to draw a filled rectangle. * param lineType Type of the line. See #LineTypes * param shift Number of fractional bits in the point coordinates. */ public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_10(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * Draws a simple, thick, or filled up-right rectangle. * * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners * are pt1 and pt2. * * param img Image. * param pt1 Vertex of the rectangle. * param pt2 Vertex of the rectangle opposite to pt1 . * param color Rectangle color or brightness (grayscale image). * param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, * mean that the function has to draw a filled rectangle. * param lineType Type of the line. See #LineTypes */ public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_11(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws a simple, thick, or filled up-right rectangle. * * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners * are pt1 and pt2. * * param img Image. * param pt1 Vertex of the rectangle. * param pt2 Vertex of the rectangle opposite to pt1 . * param color Rectangle color or brightness (grayscale image). * param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED, * mean that the function has to draw a filled rectangle. */ public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_12(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws a simple, thick, or filled up-right rectangle. * * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners * are pt1 and pt2. * * param img Image. * param pt1 Vertex of the rectangle. * param pt2 Vertex of the rectangle opposite to pt1 . * param color Rectangle color or brightness (grayscale image). * mean that the function has to draw a filled rectangle. */ public static void rectangle(Mat img, Point pt1, Point pt2, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_13(img.nativeObj, pt1.x, pt1.y, pt2.x, pt2.y, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::rectangle(Mat& img, Rect rec, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * * * use {code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and * r.br()-Point(1,1)` are opposite corners * param img automatically generated * param rec automatically generated * param color automatically generated * param thickness automatically generated * param lineType automatically generated * param shift automatically generated */ public static void rectangle(Mat img, Rect rec, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_14(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * * * use {code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and * r.br()-Point(1,1)` are opposite corners * param img automatically generated * param rec automatically generated * param color automatically generated * param thickness automatically generated * param lineType automatically generated */ public static void rectangle(Mat img, Rect rec, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_15(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * * * use {code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and * r.br()-Point(1,1)` are opposite corners * param img automatically generated * param rec automatically generated * param color automatically generated * param thickness automatically generated */ public static void rectangle(Mat img, Rect rec, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_16(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * * * use {code rec} parameter as alternative specification of the drawn rectangle: `r.tl() and * r.br()-Point(1,1)` are opposite corners * param img automatically generated * param rec automatically generated * param color automatically generated */ public static void rectangle(Mat img, Rect rec, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_rectangle_17(img.nativeObj, rec.x, rec.y, rec.width, rec.height, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * Draws a circle. * * The function cv::circle draws a simple or filled circle with a given center and radius. * param img Image where the circle is drawn. * param center Center of the circle. * param radius Radius of the circle. * param color Circle color. * param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, * mean that a filled circle is to be drawn. * param lineType Type of the circle boundary. See #LineTypes * param shift Number of fractional bits in the coordinates of the center and in the radius value. */ public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_circle_10(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * Draws a circle. * * The function cv::circle draws a simple or filled circle with a given center and radius. * param img Image where the circle is drawn. * param center Center of the circle. * param radius Radius of the circle. * param color Circle color. * param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, * mean that a filled circle is to be drawn. * param lineType Type of the circle boundary. See #LineTypes */ public static void circle(Mat img, Point center, int radius, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_circle_11(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws a circle. * * The function cv::circle draws a simple or filled circle with a given center and radius. * param img Image where the circle is drawn. * param center Center of the circle. * param radius Radius of the circle. * param color Circle color. * param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED, * mean that a filled circle is to be drawn. */ public static void circle(Mat img, Point center, int radius, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_circle_12(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws a circle. * * The function cv::circle draws a simple or filled circle with a given center and radius. * param img Image where the circle is drawn. * param center Center of the circle. * param radius Radius of the circle. * param color Circle color. * mean that a filled circle is to be drawn. */ public static void circle(Mat img, Point center, int radius, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_circle_13(img.nativeObj, center.x, center.y, radius, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * Draws a simple or thick elliptic arc or fills an ellipse sector. * * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic * arc, or a filled ellipse sector. The drawing code uses general parametric form. * A piecewise-linear curve is used to approximate the elliptic arc * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first * variant of the function and want to draw the whole ellipse, not an arc, pass {code startAngle=0} and * {code endAngle=360}. If {code startAngle} is greater than {code endAngle}, they are swapped. The figure below explains * the meaning of the parameters to draw the blue arc. * * ![Parameters of Elliptic Arc](pics/ellipse.svg) * * param img Image. * param center Center of the ellipse. * param axes Half of the size of the ellipse main axes. * param angle Ellipse rotation angle in degrees. * param startAngle Starting angle of the elliptic arc in degrees. * param endAngle Ending angle of the elliptic arc in degrees. * param color Ellipse color. * param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that * a filled ellipse sector is to be drawn. * param lineType Type of the ellipse boundary. See #LineTypes * param shift Number of fractional bits in the coordinates of the center and values of axes. */ public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_10(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * Draws a simple or thick elliptic arc or fills an ellipse sector. * * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic * arc, or a filled ellipse sector. The drawing code uses general parametric form. * A piecewise-linear curve is used to approximate the elliptic arc * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first * variant of the function and want to draw the whole ellipse, not an arc, pass {code startAngle=0} and * {code endAngle=360}. If {code startAngle} is greater than {code endAngle}, they are swapped. The figure below explains * the meaning of the parameters to draw the blue arc. * * ![Parameters of Elliptic Arc](pics/ellipse.svg) * * param img Image. * param center Center of the ellipse. * param axes Half of the size of the ellipse main axes. * param angle Ellipse rotation angle in degrees. * param startAngle Starting angle of the elliptic arc in degrees. * param endAngle Ending angle of the elliptic arc in degrees. * param color Ellipse color. * param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that * a filled ellipse sector is to be drawn. * param lineType Type of the ellipse boundary. See #LineTypes */ public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_11(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws a simple or thick elliptic arc or fills an ellipse sector. * * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic * arc, or a filled ellipse sector. The drawing code uses general parametric form. * A piecewise-linear curve is used to approximate the elliptic arc * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first * variant of the function and want to draw the whole ellipse, not an arc, pass {code startAngle=0} and * {code endAngle=360}. If {code startAngle} is greater than {code endAngle}, they are swapped. The figure below explains * the meaning of the parameters to draw the blue arc. * * ![Parameters of Elliptic Arc](pics/ellipse.svg) * * param img Image. * param center Center of the ellipse. * param axes Half of the size of the ellipse main axes. * param angle Ellipse rotation angle in degrees. * param startAngle Starting angle of the elliptic arc in degrees. * param endAngle Ending angle of the elliptic arc in degrees. * param color Ellipse color. * param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that * a filled ellipse sector is to be drawn. */ public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_12(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws a simple or thick elliptic arc or fills an ellipse sector. * * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic * arc, or a filled ellipse sector. The drawing code uses general parametric form. * A piecewise-linear curve is used to approximate the elliptic arc * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first * variant of the function and want to draw the whole ellipse, not an arc, pass {code startAngle=0} and * {code endAngle=360}. If {code startAngle} is greater than {code endAngle}, they are swapped. The figure below explains * the meaning of the parameters to draw the blue arc. * * ![Parameters of Elliptic Arc](pics/ellipse.svg) * * param img Image. * param center Center of the ellipse. * param axes Half of the size of the ellipse main axes. * param angle Ellipse rotation angle in degrees. * param startAngle Starting angle of the elliptic arc in degrees. * param endAngle Ending angle of the elliptic arc in degrees. * param color Ellipse color. * a filled ellipse sector is to be drawn. */ public static void ellipse(Mat img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_13(img.nativeObj, center.x, center.y, axes.width, axes.height, angle, startAngle, endAngle, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8) // /** * * param img Image. * param box Alternative ellipse representation via RotatedRect. This means that the function draws * an ellipse inscribed in the rotated rectangle. * param color Ellipse color. * param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that * a filled ellipse sector is to be drawn. * param lineType Type of the ellipse boundary. See #LineTypes */ public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_14(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * * param img Image. * param box Alternative ellipse representation via RotatedRect. This means that the function draws * an ellipse inscribed in the rotated rectangle. * param color Ellipse color. * param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that * a filled ellipse sector is to be drawn. */ public static void ellipse(Mat img, RotatedRect box, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_15(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * * param img Image. * param box Alternative ellipse representation via RotatedRect. This means that the function draws * an ellipse inscribed in the rotated rectangle. * param color Ellipse color. * a filled ellipse sector is to be drawn. */ public static void ellipse(Mat img, RotatedRect box, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_ellipse_16(img.nativeObj, box.center.x, box.center.y, box.size.width, box.size.height, box.angle, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8) // /** * Draws a marker on a predefined position in an image. * * The function cv::drawMarker draws a marker on a given position in the image. For the moment several * marker types are supported, see #MarkerTypes for more information. * * param img Image. * param position The point where the crosshair is positioned. * param color Line color. * param markerType The specific type of marker you want to use, see #MarkerTypes * param thickness Line thickness. * param line_type Type of the line, See #LineTypes * param markerSize The length of the marker axis [default = 20 pixels] */ public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness, int line_type) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_drawMarker_10(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness, line_type); } /** * Draws a marker on a predefined position in an image. * * The function cv::drawMarker draws a marker on a given position in the image. For the moment several * marker types are supported, see #MarkerTypes for more information. * * param img Image. * param position The point where the crosshair is positioned. * param color Line color. * param markerType The specific type of marker you want to use, see #MarkerTypes * param thickness Line thickness. * param markerSize The length of the marker axis [default = 20 pixels] */ public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_drawMarker_11(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize, thickness); } /** * Draws a marker on a predefined position in an image. * * The function cv::drawMarker draws a marker on a given position in the image. For the moment several * marker types are supported, see #MarkerTypes for more information. * * param img Image. * param position The point where the crosshair is positioned. * param color Line color. * param markerType The specific type of marker you want to use, see #MarkerTypes * param markerSize The length of the marker axis [default = 20 pixels] */ public static void drawMarker(Mat img, Point position, Scalar color, int markerType, int markerSize) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_drawMarker_12(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType, markerSize); } /** * Draws a marker on a predefined position in an image. * * The function cv::drawMarker draws a marker on a given position in the image. For the moment several * marker types are supported, see #MarkerTypes for more information. * * param img Image. * param position The point where the crosshair is positioned. * param color Line color. * param markerType The specific type of marker you want to use, see #MarkerTypes */ public static void drawMarker(Mat img, Point position, Scalar color, int markerType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_drawMarker_13(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3], markerType); } /** * Draws a marker on a predefined position in an image. * * The function cv::drawMarker draws a marker on a given position in the image. For the moment several * marker types are supported, see #MarkerTypes for more information. * * param img Image. * param position The point where the crosshair is positioned. * param color Line color. */ public static void drawMarker(Mat img, Point position, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_drawMarker_14(img.nativeObj, position.x, position.y, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0) // /** * Fills a convex polygon. * * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) * twice at the most (though, its top-most and/or the bottom edge could be horizontal). * * param img Image. * param points Polygon vertices. * param color Polygon color. * param lineType Type of the polygon boundaries. See #LineTypes * param shift Number of fractional bits in the vertex coordinates. */ public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; imgproc_Imgproc_fillConvexPoly_10(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift); } /** * Fills a convex polygon. * * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) * twice at the most (though, its top-most and/or the bottom edge could be horizontal). * * param img Image. * param points Polygon vertices. * param color Polygon color. * param lineType Type of the polygon boundaries. See #LineTypes */ public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color, int lineType) { if (img != null) img.ThrowIfDisposed(); if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; imgproc_Imgproc_fillConvexPoly_11(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType); } /** * Fills a convex polygon. * * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) * twice at the most (though, its top-most and/or the bottom edge could be horizontal). * * param img Image. * param points Polygon vertices. * param color Polygon color. */ public static void fillConvexPoly(Mat img, MatOfPoint points, Scalar color) { if (img != null) img.ThrowIfDisposed(); if (points != null) points.ThrowIfDisposed(); Mat points_mat = points; imgproc_Imgproc_fillConvexPoly_12(img.nativeObj, points_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point()) // /** * Fills the area bounded by one or more polygons. * * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill * complex areas, for example, areas with holes, contours with self-intersections (some of their * parts), and so forth. * * param img Image. * param pts Array of polygons where each polygon is represented as an array of points. * param color Polygon color. * param lineType Type of the polygon boundaries. See #LineTypes * param shift Number of fractional bits in the vertex coordinates. * param offset Optional offset of all points of the contours. */ public static void fillPoly(Mat img, List pts, Scalar color, int lineType, int shift, Point offset) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_fillPoly_10(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift, offset.x, offset.y); } /** * Fills the area bounded by one or more polygons. * * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill * complex areas, for example, areas with holes, contours with self-intersections (some of their * parts), and so forth. * * param img Image. * param pts Array of polygons where each polygon is represented as an array of points. * param color Polygon color. * param lineType Type of the polygon boundaries. See #LineTypes * param shift Number of fractional bits in the vertex coordinates. */ public static void fillPoly(Mat img, List pts, Scalar color, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_fillPoly_11(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType, shift); } /** * Fills the area bounded by one or more polygons. * * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill * complex areas, for example, areas with holes, contours with self-intersections (some of their * parts), and so forth. * * param img Image. * param pts Array of polygons where each polygon is represented as an array of points. * param color Polygon color. * param lineType Type of the polygon boundaries. See #LineTypes */ public static void fillPoly(Mat img, List pts, Scalar color, int lineType) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_fillPoly_12(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3], lineType); } /** * Fills the area bounded by one or more polygons. * * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill * complex areas, for example, areas with holes, contours with self-intersections (some of their * parts), and so forth. * * param img Image. * param pts Array of polygons where each polygon is represented as an array of points. * param color Polygon color. */ public static void fillPoly(Mat img, List pts, Scalar color) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_fillPoly_13(img.nativeObj, pts_mat.nativeObj, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) // /** * Draws several polygonal curves. * * param img Image. * param pts Array of polygonal curves. * param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, * the function draws a line from the last vertex of each curve to its first vertex. * param color Polyline color. * param thickness Thickness of the polyline edges. * param lineType Type of the line segments. See #LineTypes * param shift Number of fractional bits in the vertex coordinates. * * The function cv::polylines draws one or more polygonal curves. */ public static void polylines(Mat img, List pts, bool isClosed, Scalar color, int thickness, int lineType, int shift) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_polylines_10(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, shift); } /** * Draws several polygonal curves. * * param img Image. * param pts Array of polygonal curves. * param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, * the function draws a line from the last vertex of each curve to its first vertex. * param color Polyline color. * param thickness Thickness of the polyline edges. * param lineType Type of the line segments. See #LineTypes * * The function cv::polylines draws one or more polygonal curves. */ public static void polylines(Mat img, List pts, bool isClosed, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_polylines_11(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws several polygonal curves. * * param img Image. * param pts Array of polygonal curves. * param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, * the function draws a line from the last vertex of each curve to its first vertex. * param color Polyline color. * param thickness Thickness of the polyline edges. * * The function cv::polylines draws one or more polygonal curves. */ public static void polylines(Mat img, List pts, bool isClosed, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_polylines_12(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws several polygonal curves. * * param img Image. * param pts Array of polygonal curves. * param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, * the function draws a line from the last vertex of each curve to its first vertex. * param color Polyline color. * * The function cv::polylines draws one or more polygonal curves. */ public static void polylines(Mat img, List pts, bool isClosed, Scalar color) { if (img != null) img.ThrowIfDisposed(); List pts_tmplm = new List((pts != null) ? pts.Count : 0); Mat pts_mat = Converters.vector_vector_Point_to_Mat(pts, pts_tmplm); imgproc_Imgproc_polylines_13(img.nativeObj, pts_mat.nativeObj, isClosed, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) // /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * param thickness Thickness of lines the contours are drawn with. If it is negative (for example, * thickness=#FILLED ), the contour interiors are drawn. * param lineType Line connectivity. See #LineTypes * param hierarchy Optional information about hierarchy. It is only needed if you want to draw only * some of the contours (see maxLevel ). * param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * param offset Optional contour shift parameter. Shift all the drawn contours by the specified * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel, Point offset) { if (image != null) image.ThrowIfDisposed(); if (hierarchy != null) hierarchy.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_10(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel, offset.x, offset.y); } /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * param thickness Thickness of lines the contours are drawn with. If it is negative (for example, * thickness=#FILLED ), the contour interiors are drawn. * param lineType Line connectivity. See #LineTypes * param hierarchy Optional information about hierarchy. It is only needed if you want to draw only * some of the contours (see maxLevel ). * param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy, int maxLevel) { if (image != null) image.ThrowIfDisposed(); if (hierarchy != null) hierarchy.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_11(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj, maxLevel); } /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * param thickness Thickness of lines the contours are drawn with. If it is negative (for example, * thickness=#FILLED ), the contour interiors are drawn. * param lineType Line connectivity. See #LineTypes * param hierarchy Optional information about hierarchy. It is only needed if you want to draw only * some of the contours (see maxLevel ). * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType, Mat hierarchy) { if (image != null) image.ThrowIfDisposed(); if (hierarchy != null) hierarchy.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_12(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, hierarchy.nativeObj); } /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * param thickness Thickness of lines the contours are drawn with. If it is negative (for example, * thickness=#FILLED ), the contour interiors are drawn. * param lineType Line connectivity. See #LineTypes * some of the contours (see maxLevel ). * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness, int lineType) { if (image != null) image.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_13(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * param thickness Thickness of lines the contours are drawn with. If it is negative (for example, * thickness=#FILLED ), the contour interiors are drawn. * some of the contours (see maxLevel ). * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color, int thickness) { if (image != null) image.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_14(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws contours outlines or filled contours. * * The function draws contour outlines in the image if \(\texttt{thickness} \ge 0\) or fills the area * bounded by the contours if \(\texttt{thickness}<0\) . The example below shows how to retrieve * connected components from the binary image and label them: : * INCLUDE: snippets/imgproc_drawContours.cpp * * param image Destination image. * param contours All the input contours. Each contour is stored as a point vector. * param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. * param color Color of the contours. * thickness=#FILLED ), the contour interiors are drawn. * some of the contours (see maxLevel ). * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This * parameter is only taken into account when there is hierarchy available. * \(\texttt{offset}=(dx,dy)\) . * Note: When thickness=#FILLED, the function is designed to handle connected components with holes correctly * even when no hierarchy data is provided. This is done by analyzing all the outlines together * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group * of contours, or iterate over the collection using contourIdx parameter. */ public static void drawContours(Mat image, List contours, int contourIdx, Scalar color) { if (image != null) image.ThrowIfDisposed(); List contours_tmplm = new List((contours != null) ? contours.Count : 0); Mat contours_mat = Converters.vector_vector_Point_to_Mat(contours, contours_tmplm); imgproc_Imgproc_drawContours_15(image.nativeObj, contours_mat.nativeObj, contourIdx, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2) // /** * * param imgRect Image rectangle. * param pt1 First line point. * param pt2 Second line point. * return automatically generated */ public static bool clipLine(Rect imgRect, Point pt1, Point pt2) { double[] pt1_out = new double[2]; double[] pt2_out = new double[2]; bool retVal = imgproc_Imgproc_clipLine_10(imgRect.x, imgRect.y, imgRect.width, imgRect.height, pt1.x, pt1.y, pt1_out, pt2.x, pt2.y, pt2_out); if (pt1 != null) { pt1.x = pt1_out[0]; pt1.y = pt1_out[1]; } if (pt2 != null) { pt2.x = pt2_out[0]; pt2.y = pt2_out[1]; } return retVal; } // // C++: void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts) // /** * Approximates an elliptic arc with a polyline. * * The function ellipse2Poly computes the vertices of a polyline that approximates the specified * elliptic arc. It is used by #ellipse. If {code arcStart} is greater than {code arcEnd}, they are swapped. * * param center Center of the arc. * param axes Half of the size of the ellipse main axes. See #ellipse for details. * param angle Rotation angle of the ellipse in degrees. See #ellipse for details. * param arcStart Starting angle of the elliptic arc in degrees. * param arcEnd Ending angle of the elliptic arc in degrees. * param delta Angle between the subsequent polyline vertices. It defines the approximation * accuracy. * param pts Output vector of polyline vertices. */ public static void ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, MatOfPoint pts) { if (pts != null) pts.ThrowIfDisposed(); Mat pts_mat = pts; imgproc_Imgproc_ellipse2Poly_10(center.x, center.y, axes.width, axes.height, angle, arcStart, arcEnd, delta, pts_mat.nativeObj); } // // C++: void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false) // /** * Draws a text string. * * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered * using the specified font are replaced by question marks. See #getTextSize for a text rendering code * example. * * param img Image. * param text Text string to be drawn. * param org Bottom-left corner of the text string in the image. * param fontFace Font type, see #HersheyFonts. * param fontScale Font scale factor that is multiplied by the font-specific base size. * param color Text color. * param thickness Thickness of the lines used to draw a text. * param lineType Line type. See #LineTypes * param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, * it is at the top-left corner. */ public static void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType, bool bottomLeftOrigin) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_putText_10(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType, bottomLeftOrigin); } /** * Draws a text string. * * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered * using the specified font are replaced by question marks. See #getTextSize for a text rendering code * example. * * param img Image. * param text Text string to be drawn. * param org Bottom-left corner of the text string in the image. * param fontFace Font type, see #HersheyFonts. * param fontScale Font scale factor that is multiplied by the font-specific base size. * param color Text color. * param thickness Thickness of the lines used to draw a text. * param lineType Line type. See #LineTypes * it is at the top-left corner. */ public static void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness, int lineType) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_putText_11(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness, lineType); } /** * Draws a text string. * * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered * using the specified font are replaced by question marks. See #getTextSize for a text rendering code * example. * * param img Image. * param text Text string to be drawn. * param org Bottom-left corner of the text string in the image. * param fontFace Font type, see #HersheyFonts. * param fontScale Font scale factor that is multiplied by the font-specific base size. * param color Text color. * param thickness Thickness of the lines used to draw a text. * it is at the top-left corner. */ public static void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color, int thickness) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_putText_12(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3], thickness); } /** * Draws a text string. * * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered * using the specified font are replaced by question marks. See #getTextSize for a text rendering code * example. * * param img Image. * param text Text string to be drawn. * param org Bottom-left corner of the text string in the image. * param fontFace Font type, see #HersheyFonts. * param fontScale Font scale factor that is multiplied by the font-specific base size. * param color Text color. * it is at the top-left corner. */ public static void putText(Mat img, string text, Point org, int fontFace, double fontScale, Scalar color) { if (img != null) img.ThrowIfDisposed(); imgproc_Imgproc_putText_13(img.nativeObj, text, org.x, org.y, fontFace, fontScale, color.val[0], color.val[1], color.val[2], color.val[3]); } // // C++: double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1) // /** * Calculates the font-specific size to use to achieve a given height in pixels. * * param fontFace Font to use, see cv::HersheyFonts. * param pixelHeight Pixel height to compute the fontScale for * param thickness Thickness of lines used to render the text.See putText for details. * return The fontSize to use for cv::putText * * SEE: cv::putText */ public static double getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness) { return imgproc_Imgproc_getFontScaleFromHeight_10(fontFace, pixelHeight, thickness); } /** * Calculates the font-specific size to use to achieve a given height in pixels. * * param fontFace Font to use, see cv::HersheyFonts. * param pixelHeight Pixel height to compute the fontScale for * return The fontSize to use for cv::putText * * SEE: cv::putText */ public static double getFontScaleFromHeight(int fontFace, int pixelHeight) { return imgproc_Imgproc_getFontScaleFromHeight_11(fontFace, pixelHeight); } // // C++: void cv::HoughLinesWithAccumulator(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) // /** * Finds lines in a binary image using the standard Hough transform and get accumulator. * * Note: This function is for bindings use only. Use original function in C++ code * * SEE: HoughLines * param image automatically generated * param lines automatically generated * param rho automatically generated * param theta automatically generated * param threshold automatically generated * param srn automatically generated * param stn automatically generated * param min_theta automatically generated * param max_theta automatically generated */ public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesWithAccumulator_10(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta, max_theta); } /** * Finds lines in a binary image using the standard Hough transform and get accumulator. * * Note: This function is for bindings use only. Use original function in C++ code * * SEE: HoughLines * param image automatically generated * param lines automatically generated * param rho automatically generated * param theta automatically generated * param threshold automatically generated * param srn automatically generated * param stn automatically generated * param min_theta automatically generated */ public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn, double min_theta) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesWithAccumulator_11(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn, min_theta); } /** * Finds lines in a binary image using the standard Hough transform and get accumulator. * * Note: This function is for bindings use only. Use original function in C++ code * * SEE: HoughLines * param image automatically generated * param lines automatically generated * param rho automatically generated * param theta automatically generated * param threshold automatically generated * param srn automatically generated * param stn automatically generated */ public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn, double stn) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesWithAccumulator_12(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn, stn); } /** * Finds lines in a binary image using the standard Hough transform and get accumulator. * * Note: This function is for bindings use only. Use original function in C++ code * * SEE: HoughLines * param image automatically generated * param lines automatically generated * param rho automatically generated * param theta automatically generated * param threshold automatically generated * param srn automatically generated */ public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold, double srn) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesWithAccumulator_13(image.nativeObj, lines.nativeObj, rho, theta, threshold, srn); } /** * Finds lines in a binary image using the standard Hough transform and get accumulator. * * Note: This function is for bindings use only. Use original function in C++ code * * SEE: HoughLines * param image automatically generated * param lines automatically generated * param rho automatically generated * param theta automatically generated * param threshold automatically generated */ public static void HoughLinesWithAccumulator(Mat image, Mat lines, double rho, double theta, int threshold) { if (image != null) image.ThrowIfDisposed(); if (lines != null) lines.ThrowIfDisposed(); imgproc_Imgproc_HoughLinesWithAccumulator_14(image.nativeObj, lines.nativeObj, rho, theta, threshold); } // C++: Size getTextSize(const String& text, int fontFace, double fontScale, int thickness, int* baseLine); //javadoc:getTextSize(text, fontFace, fontScale, thickness, baseLine) public static Size getTextSize(string text, int fontFace, double fontScale, int thickness, int[] baseLine) { if (baseLine != null && baseLine.Length != 1) throw new CvException("'baseLine' must be 'int[1]' or 'null'."); double[] tmpArray = new double[2]; imgproc_Imgproc_n_1getTextSize(text, fontFace, fontScale, thickness, baseLine, tmpArray); Size retVal = new Size(tmpArray); return retVal; } #if (UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR const string LIBNAME = "__Internal"; #else const string LIBNAME = "opencvforunity"; #endif // C++: Ptr_LineSegmentDetector cv::createLineSegmentDetector(int refine = LSD_REFINE_STD, double scale = 0.8, double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, double log_eps = 0, double density_th = 0.7, int n_bins = 1024) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_10(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th, int n_bins); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_11(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps, double density_th); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_12(int refine, double scale, double sigma_scale, double quant, double ang_th, double log_eps); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_13(int refine, double scale, double sigma_scale, double quant, double ang_th); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_14(int refine, double scale, double sigma_scale, double quant); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_15(int refine, double scale, double sigma_scale); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_16(int refine, double scale); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_17(int refine); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createLineSegmentDetector_18(); // C++: Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getGaussianKernel_10(int ksize, double sigma, int ktype); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getGaussianKernel_11(int ksize, double sigma); // C++: void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_getDerivKernels_10(IntPtr kx_nativeObj, IntPtr ky_nativeObj, int dx, int dy, int ksize, [MarshalAs(UnmanagedType.U1)] bool normalize, int ktype); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_getDerivKernels_11(IntPtr kx_nativeObj, IntPtr ky_nativeObj, int dx, int dy, int ksize, [MarshalAs(UnmanagedType.U1)] bool normalize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_getDerivKernels_12(IntPtr kx_nativeObj, IntPtr ky_nativeObj, int dx, int dy, int ksize); // C++: Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getGaborKernel_10(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi, int ktype); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getGaborKernel_11(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma, double psi); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getGaborKernel_12(double ksize_width, double ksize_height, double sigma, double theta, double lambd, double gamma); // C++: Mat cv::getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getStructuringElement_10(int shape, double ksize_width, double ksize_height, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getStructuringElement_11(int shape, double ksize_width, double ksize_height); // C++: void cv::medianBlur(Mat src, Mat& dst, int ksize) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_medianBlur_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ksize); // C++: void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_GaussianBlur_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_GaussianBlur_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height, double sigmaX, double sigmaY); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_GaussianBlur_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height, double sigmaX); // C++: void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_bilateralFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_bilateralFilter_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int d, double sigmaColor, double sigmaSpace); // C++: void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boxFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, [MarshalAs(UnmanagedType.U1)] bool normalize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boxFilter_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, [MarshalAs(UnmanagedType.U1)] bool normalize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boxFilter_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boxFilter_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height); // C++: void cv::sqrBoxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sqrBoxFilter_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, [MarshalAs(UnmanagedType.U1)] bool normalize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sqrBoxFilter_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y, [MarshalAs(UnmanagedType.U1)] bool normalize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sqrBoxFilter_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sqrBoxFilter_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, double ksize_width, double ksize_height); // C++: void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_blur_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_blur_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_blur_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height); // C++: void cv::stackBlur(Mat src, Mat& dst, Size ksize) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_stackBlur_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double ksize_width, double ksize_height); // C++: void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_filter2D_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_filter2D_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, double delta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_filter2D_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernel_nativeObj, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_filter2D_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernel_nativeObj); // C++: void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sepFilter2D_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernelX_nativeObj, IntPtr kernelY_nativeObj, double anchor_x, double anchor_y, double delta, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sepFilter2D_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernelX_nativeObj, IntPtr kernelY_nativeObj, double anchor_x, double anchor_y, double delta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sepFilter2D_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernelX_nativeObj, IntPtr kernelY_nativeObj, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_sepFilter2D_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, IntPtr kernelX_nativeObj, IntPtr kernelY_nativeObj); // C++: void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Sobel_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Sobel_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale, double delta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Sobel_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, int ksize, double scale); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Sobel_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, int ksize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Sobel_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy); // C++: void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_spatialGradient_10(IntPtr src_nativeObj, IntPtr dx_nativeObj, IntPtr dy_nativeObj, int ksize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_spatialGradient_11(IntPtr src_nativeObj, IntPtr dx_nativeObj, IntPtr dy_nativeObj, int ksize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_spatialGradient_12(IntPtr src_nativeObj, IntPtr dx_nativeObj, IntPtr dy_nativeObj); // C++: void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Scharr_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Scharr_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, double scale, double delta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Scharr_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy, double scale); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Scharr_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int dx, int dy); // C++: void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Laplacian_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int ksize, double scale, double delta, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Laplacian_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int ksize, double scale, double delta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Laplacian_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int ksize, double scale); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Laplacian_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth, int ksize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Laplacian_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ddepth); // C++: void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Canny_10(IntPtr image_nativeObj, IntPtr edges_nativeObj, double threshold1, double threshold2, int apertureSize, [MarshalAs(UnmanagedType.U1)] bool L2gradient); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Canny_11(IntPtr image_nativeObj, IntPtr edges_nativeObj, double threshold1, double threshold2, int apertureSize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Canny_12(IntPtr image_nativeObj, IntPtr edges_nativeObj, double threshold1, double threshold2); // C++: void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Canny_13(IntPtr dx_nativeObj, IntPtr dy_nativeObj, IntPtr edges_nativeObj, double threshold1, double threshold2, [MarshalAs(UnmanagedType.U1)] bool L2gradient); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_Canny_14(IntPtr dx_nativeObj, IntPtr dy_nativeObj, IntPtr edges_nativeObj, double threshold1, double threshold2); // C++: void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerMinEigenVal_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerMinEigenVal_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerMinEigenVal_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize); // C++: void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerHarris_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize, double k, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerHarris_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize, double k); // C++: void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerEigenValsAndVecs_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerEigenValsAndVecs_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int blockSize, int ksize); // C++: void cv::preCornerDetect(Mat src, Mat& dst, int ksize, int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_preCornerDetect_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ksize, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_preCornerDetect_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int ksize); // C++: void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cornerSubPix_10(IntPtr image_nativeObj, IntPtr corners_nativeObj, double winSize_width, double winSize_height, double zeroZone_width, double zeroZone_height, int criteria_type, int criteria_maxCount, double criteria_epsilon); // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_10(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector, double k); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_11(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_12(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_13(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_14(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance); // C++: void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_15(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize, int gradientSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector, double k); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_16(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize, int gradientSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrack_17(IntPtr image_nativeObj, IntPtr corners_mat_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, int blockSize, int gradientSize); // C++: void cv::goodFeaturesToTrack(Mat image, Mat& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat& cornersQuality, int blockSize = 3, int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrackWithQuality_10(IntPtr image_nativeObj, IntPtr corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, IntPtr cornersQuality_nativeObj, int blockSize, int gradientSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector, double k); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrackWithQuality_11(IntPtr image_nativeObj, IntPtr corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, IntPtr cornersQuality_nativeObj, int blockSize, int gradientSize, [MarshalAs(UnmanagedType.U1)] bool useHarrisDetector); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrackWithQuality_12(IntPtr image_nativeObj, IntPtr corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, IntPtr cornersQuality_nativeObj, int blockSize, int gradientSize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrackWithQuality_13(IntPtr image_nativeObj, IntPtr corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, IntPtr cornersQuality_nativeObj, int blockSize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_goodFeaturesToTrackWithQuality_14(IntPtr image_nativeObj, IntPtr corners_nativeObj, int maxCorners, double qualityLevel, double minDistance, IntPtr mask_nativeObj, IntPtr cornersQuality_nativeObj); // C++: void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLines_10(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLines_11(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLines_12(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLines_13(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLines_14(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold); // C++: void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesP_10(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double minLineLength, double maxLineGap); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesP_11(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double minLineLength); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesP_12(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold); // C++: void cv::HoughLinesPointSet(Mat point, Mat& lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesPointSet_10(IntPtr point_nativeObj, IntPtr lines_nativeObj, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step); // C++: void cv::HoughCircles(Mat image, Mat& circles, int method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughCircles_10(IntPtr image_nativeObj, IntPtr circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius, int maxRadius); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughCircles_11(IntPtr image_nativeObj, IntPtr circles_nativeObj, int method, double dp, double minDist, double param1, double param2, int minRadius); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughCircles_12(IntPtr image_nativeObj, IntPtr circles_nativeObj, int method, double dp, double minDist, double param1, double param2); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughCircles_13(IntPtr image_nativeObj, IntPtr circles_nativeObj, int method, double dp, double minDist, double param1); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughCircles_14(IntPtr image_nativeObj, IntPtr circles_nativeObj, int method, double dp, double minDist); // C++: void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_erode_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_erode_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_erode_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_erode_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_erode_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj); // C++: void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_dilate_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_dilate_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_dilate_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_dilate_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_dilate_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr kernel_nativeObj); // C++: void cv::morphologyEx(Mat src, Mat& dst, int op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, int borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_morphologyEx_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int op, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_morphologyEx_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int op, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_morphologyEx_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, int op, IntPtr kernel_nativeObj, double anchor_x, double anchor_y, int iterations); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_morphologyEx_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, int op, IntPtr kernel_nativeObj, double anchor_x, double anchor_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_morphologyEx_14(IntPtr src_nativeObj, IntPtr dst_nativeObj, int op, IntPtr kernel_nativeObj); // C++: void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_resize_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy, int interpolation); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_resize_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dsize_width, double dsize_height, double fx, double fy); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_resize_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dsize_width, double dsize_height, double fx); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_resize_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dsize_width, double dsize_height); // C++: void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpAffine_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpAffine_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpAffine_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpAffine_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height); // C++: void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpPerspective_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpPerspective_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags, int borderMode); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpPerspective_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height, int flags); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpPerspective_13(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr M_nativeObj, double dsize_width, double dsize_height); // C++: void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_remap_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr map1_nativeObj, IntPtr map2_nativeObj, int interpolation, int borderMode, double borderValue_val0, double borderValue_val1, double borderValue_val2, double borderValue_val3); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_remap_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr map1_nativeObj, IntPtr map2_nativeObj, int interpolation, int borderMode); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_remap_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr map1_nativeObj, IntPtr map2_nativeObj, int interpolation); // C++: void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_convertMaps_10(IntPtr map1_nativeObj, IntPtr map2_nativeObj, IntPtr dstmap1_nativeObj, IntPtr dstmap2_nativeObj, int dstmap1type, [MarshalAs(UnmanagedType.U1)] bool nninterpolation); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_convertMaps_11(IntPtr map1_nativeObj, IntPtr map2_nativeObj, IntPtr dstmap1_nativeObj, IntPtr dstmap2_nativeObj, int dstmap1type); // C++: Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getRotationMatrix2D_10(double center_x, double center_y, double angle, double scale); // C++: void cv::invertAffineTransform(Mat M, Mat& iM) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_invertAffineTransform_10(IntPtr M_nativeObj, IntPtr iM_nativeObj); // C++: Mat cv::getPerspectiveTransform(Mat src, Mat dst, int solveMethod = DECOMP_LU) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getPerspectiveTransform_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int solveMethod); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getPerspectiveTransform_11(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_getAffineTransform_10(IntPtr src_mat_nativeObj, IntPtr dst_mat_nativeObj); // C++: void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_getRectSubPix_10(IntPtr image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, IntPtr patch_nativeObj, int patchType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_getRectSubPix_11(IntPtr image_nativeObj, double patchSize_width, double patchSize_height, double center_x, double center_y, IntPtr patch_nativeObj); // C++: void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_logPolar_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double center_x, double center_y, double M, int flags); // C++: void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_linearPolar_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double center_x, double center_y, double maxRadius, int flags); // C++: void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_warpPolar_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dsize_width, double dsize_height, double center_x, double center_y, double maxRadius, int flags); // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral3_10(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj, IntPtr tilted_nativeObj, int sdepth, int sqdepth); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral3_11(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj, IntPtr tilted_nativeObj, int sdepth); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral3_12(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj, IntPtr tilted_nativeObj); // C++: void cv::integral(Mat src, Mat& sum, int sdepth = -1) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral_10(IntPtr src_nativeObj, IntPtr sum_nativeObj, int sdepth); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral_11(IntPtr src_nativeObj, IntPtr sum_nativeObj); // C++: void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral2_10(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj, int sdepth, int sqdepth); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral2_11(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj, int sdepth); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_integral2_12(IntPtr src_nativeObj, IntPtr sum_nativeObj, IntPtr sqsum_nativeObj); // C++: void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulate_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulate_11(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateSquare_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateSquare_11(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateProduct_10(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr dst_nativeObj, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateProduct_11(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr dst_nativeObj); // C++: void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateWeighted_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double alpha, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_accumulateWeighted_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double alpha); // C++: Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_phaseCorrelate_10(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr window_nativeObj, double[] response_out, double[] retVal); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_phaseCorrelate_11(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr window_nativeObj, double[] retVal); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_phaseCorrelate_12(IntPtr src1_nativeObj, IntPtr src2_nativeObj, double[] retVal); // C++: void cv::createHanningWindow(Mat& dst, Size winSize, int type) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_createHanningWindow_10(IntPtr dst_nativeObj, double winSize_width, double winSize_height, int type); // C++: void cv::divSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_divSpectrums_10(IntPtr a_nativeObj, IntPtr b_nativeObj, IntPtr c_nativeObj, int flags, [MarshalAs(UnmanagedType.U1)] bool conjB); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_divSpectrums_11(IntPtr a_nativeObj, IntPtr b_nativeObj, IntPtr c_nativeObj, int flags); // C++: double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, int type) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_threshold_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double thresh, double maxval, int type); // C++: void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_adaptiveThreshold_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C); // C++: void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrDown_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrDown_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dstsize_width, double dstsize_height); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrDown_12(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), int borderType = BORDER_DEFAULT) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrUp_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dstsize_width, double dstsize_height, int borderType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrUp_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double dstsize_width, double dstsize_height); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrUp_12(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_calcHist_10(IntPtr images_mat_nativeObj, IntPtr channels_mat_nativeObj, IntPtr mask_nativeObj, IntPtr hist_nativeObj, IntPtr histSize_mat_nativeObj, IntPtr ranges_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool accumulate); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_calcHist_11(IntPtr images_mat_nativeObj, IntPtr channels_mat_nativeObj, IntPtr mask_nativeObj, IntPtr hist_nativeObj, IntPtr histSize_mat_nativeObj, IntPtr ranges_mat_nativeObj); // C++: void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_calcBackProject_10(IntPtr images_mat_nativeObj, IntPtr channels_mat_nativeObj, IntPtr hist_nativeObj, IntPtr dst_nativeObj, IntPtr ranges_mat_nativeObj, double scale); // C++: double cv::compareHist(Mat H1, Mat H2, int method) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_compareHist_10(IntPtr H1_nativeObj, IntPtr H2_nativeObj, int method); // C++: void cv::equalizeHist(Mat src, Mat& dst) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_equalizeHist_10(IntPtr src_nativeObj, IntPtr dst_nativeObj); // C++: Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)) [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createCLAHE_10(double clipLimit, double tileGridSize_width, double tileGridSize_height); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createCLAHE_11(double clipLimit); [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createCLAHE_12(); // C++: float cv::wrapperEMD(Mat signature1, Mat signature2, int distType, Mat cost = Mat(), Ptr_float& lowerBound = Ptr(), Mat& flow = Mat()) [DllImport(LIBNAME)] private static extern float imgproc_Imgproc_EMD_10(IntPtr signature1_nativeObj, IntPtr signature2_nativeObj, int distType, IntPtr cost_nativeObj, IntPtr flow_nativeObj); [DllImport(LIBNAME)] private static extern float imgproc_Imgproc_EMD_11(IntPtr signature1_nativeObj, IntPtr signature2_nativeObj, int distType, IntPtr cost_nativeObj); [DllImport(LIBNAME)] private static extern float imgproc_Imgproc_EMD_13(IntPtr signature1_nativeObj, IntPtr signature2_nativeObj, int distType); // C++: void cv::watershed(Mat image, Mat& markers) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_watershed_10(IntPtr image_nativeObj, IntPtr markers_nativeObj); // C++: void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrMeanShiftFiltering_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, double sp, double sr, int maxLevel, int termcrit_type, int termcrit_maxCount, double termcrit_epsilon); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrMeanShiftFiltering_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, double sp, double sr, int maxLevel); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_pyrMeanShiftFiltering_12(IntPtr src_nativeObj, IntPtr dst_nativeObj, double sp, double sr); // C++: void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_grabCut_10(IntPtr img_nativeObj, IntPtr mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, IntPtr bgdModel_nativeObj, IntPtr fgdModel_nativeObj, int iterCount, int mode); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_grabCut_11(IntPtr img_nativeObj, IntPtr mask_nativeObj, int rect_x, int rect_y, int rect_width, int rect_height, IntPtr bgdModel_nativeObj, IntPtr fgdModel_nativeObj, int iterCount); // C++: void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, int distanceType, int maskSize, int labelType = DIST_LABEL_CCOMP) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_distanceTransformWithLabels_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr labels_nativeObj, int distanceType, int maskSize, int labelType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_distanceTransformWithLabels_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr labels_nativeObj, int distanceType, int maskSize); // C++: void cv::distanceTransform(Mat src, Mat& dst, int distanceType, int maskSize, int dstType = CV_32F) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_distanceTransform_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int distanceType, int maskSize, int dstType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_distanceTransform_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int distanceType, int maskSize); // C++: int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_floodFill_10(IntPtr image_nativeObj, IntPtr mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3, int flags); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_floodFill_11(IntPtr image_nativeObj, IntPtr mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3, double upDiff_val0, double upDiff_val1, double upDiff_val2, double upDiff_val3); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_floodFill_12(IntPtr image_nativeObj, IntPtr mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out, double loDiff_val0, double loDiff_val1, double loDiff_val2, double loDiff_val3); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_floodFill_13(IntPtr image_nativeObj, IntPtr mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3, double[] rect_out); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_floodFill_14(IntPtr image_nativeObj, IntPtr mask_nativeObj, double seedPoint_x, double seedPoint_y, double newVal_val0, double newVal_val1, double newVal_val2, double newVal_val3); // C++: void cv::blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat& dst) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_blendLinear_10(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr weights1_nativeObj, IntPtr weights2_nativeObj, IntPtr dst_nativeObj); // C++: void cv::cvtColor(Mat src, Mat& dst, int code, int dstCn = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cvtColor_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int code, int dstCn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cvtColor_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int code); // C++: void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_cvtColorTwoPlane_10(IntPtr src1_nativeObj, IntPtr src2_nativeObj, IntPtr dst_nativeObj, int code); // C++: void cv::demosaicing(Mat src, Mat& dst, int code, int dstCn = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_demosaicing_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int code, int dstCn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_demosaicing_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, int code); // C++: Moments cv::moments(Mat array, bool binaryImage = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_moments_10(IntPtr array_nativeObj, [MarshalAs(UnmanagedType.U1)] bool binaryImage, double[] retVal); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_moments_11(IntPtr array_nativeObj, double[] retVal); // C++: void cv::HuMoments(Moments m, Mat& hu) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HuMoments_10(double m_m00, double m_m10, double m_m01, double m_m20, double m_m11, double m_m02, double m_m30, double m_m21, double m_m12, double m_m03, IntPtr hu_nativeObj); // C++: void cv::matchTemplate(Mat image, Mat templ, Mat& result, int method, Mat mask = Mat()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_matchTemplate_10(IntPtr image_nativeObj, IntPtr templ_nativeObj, IntPtr result_nativeObj, int method, IntPtr mask_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_matchTemplate_11(IntPtr image_nativeObj, IntPtr templ_nativeObj, IntPtr result_nativeObj, int method); // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponentsWithAlgorithm_10(IntPtr image_nativeObj, IntPtr labels_nativeObj, int connectivity, int ltype, int ccltype); // C++: int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponents_10(IntPtr image_nativeObj, IntPtr labels_nativeObj, int connectivity, int ltype); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponents_11(IntPtr image_nativeObj, IntPtr labels_nativeObj, int connectivity); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponents_12(IntPtr image_nativeObj, IntPtr labels_nativeObj); // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, int ccltype) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponentsWithStatsWithAlgorithm_10(IntPtr image_nativeObj, IntPtr labels_nativeObj, IntPtr stats_nativeObj, IntPtr centroids_nativeObj, int connectivity, int ltype, int ccltype); // C++: int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponentsWithStats_10(IntPtr image_nativeObj, IntPtr labels_nativeObj, IntPtr stats_nativeObj, IntPtr centroids_nativeObj, int connectivity, int ltype); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponentsWithStats_11(IntPtr image_nativeObj, IntPtr labels_nativeObj, IntPtr stats_nativeObj, IntPtr centroids_nativeObj, int connectivity); [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_connectedComponentsWithStats_12(IntPtr image_nativeObj, IntPtr labels_nativeObj, IntPtr stats_nativeObj, IntPtr centroids_nativeObj); // C++: void cv::findContours(Mat image, vector_vector_Point& contours, Mat& hierarchy, int mode, int method, Point offset = Point()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_findContours_10(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, IntPtr hierarchy_nativeObj, int mode, int method, double offset_x, double offset_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_findContours_11(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, IntPtr hierarchy_nativeObj, int mode, int method); // C++: void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_approxPolyDP_10(IntPtr curve_mat_nativeObj, IntPtr approxCurve_mat_nativeObj, double epsilon, [MarshalAs(UnmanagedType.U1)] bool closed); // C++: double cv::arcLength(vector_Point2f curve, bool closed) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_arcLength_10(IntPtr curve_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool closed); // C++: Rect cv::boundingRect(Mat array) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boundingRect_10(IntPtr array_nativeObj, double[] retVal); // C++: double cv::contourArea(Mat contour, bool oriented = false) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_contourArea_10(IntPtr contour_nativeObj, [MarshalAs(UnmanagedType.U1)] bool oriented); [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_contourArea_11(IntPtr contour_nativeObj); // C++: RotatedRect cv::minAreaRect(vector_Point2f points) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_minAreaRect_10(IntPtr points_mat_nativeObj, double[] retVal); // C++: void cv::boxPoints(RotatedRect box, Mat& points) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_boxPoints_10(double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, IntPtr points_nativeObj); // C++: void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_minEnclosingCircle_10(IntPtr points_mat_nativeObj, double[] center_out, double[] radius_out); // C++: double cv::minEnclosingTriangle(Mat points, Mat& triangle) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_minEnclosingTriangle_10(IntPtr points_nativeObj, IntPtr triangle_nativeObj); // C++: double cv::matchShapes(Mat contour1, Mat contour2, int method, double parameter) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_matchShapes_10(IntPtr contour1_nativeObj, IntPtr contour2_nativeObj, int method, double parameter); // C++: void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_convexHull_10(IntPtr points_mat_nativeObj, IntPtr hull_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool clockwise); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_convexHull_12(IntPtr points_mat_nativeObj, IntPtr hull_mat_nativeObj); // C++: void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_convexityDefects_10(IntPtr contour_mat_nativeObj, IntPtr convexhull_mat_nativeObj, IntPtr convexityDefects_mat_nativeObj); // C++: bool cv::isContourConvex(vector_Point contour) [DllImport(LIBNAME)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool imgproc_Imgproc_isContourConvex_10(IntPtr contour_mat_nativeObj); // C++: float cv::intersectConvexConvex(Mat p1, Mat p2, Mat& p12, bool handleNested = true) [DllImport(LIBNAME)] private static extern float imgproc_Imgproc_intersectConvexConvex_10(IntPtr p1_nativeObj, IntPtr p2_nativeObj, IntPtr p12_nativeObj, [MarshalAs(UnmanagedType.U1)] bool handleNested); [DllImport(LIBNAME)] private static extern float imgproc_Imgproc_intersectConvexConvex_11(IntPtr p1_nativeObj, IntPtr p2_nativeObj, IntPtr p12_nativeObj); // C++: RotatedRect cv::fitEllipse(vector_Point2f points) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fitEllipse_10(IntPtr points_mat_nativeObj, double[] retVal); // C++: RotatedRect cv::fitEllipseAMS(Mat points) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fitEllipseAMS_10(IntPtr points_nativeObj, double[] retVal); // C++: RotatedRect cv::fitEllipseDirect(Mat points) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fitEllipseDirect_10(IntPtr points_nativeObj, double[] retVal); // C++: void cv::fitLine(Mat points, Mat& line, int distType, double param, double reps, double aeps) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fitLine_10(IntPtr points_nativeObj, IntPtr line_nativeObj, int distType, double param, double reps, double aeps); // C++: double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_pointPolygonTest_10(IntPtr contour_mat_nativeObj, double pt_x, double pt_y, [MarshalAs(UnmanagedType.U1)] bool measureDist); // C++: int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion) [DllImport(LIBNAME)] private static extern int imgproc_Imgproc_rotatedRectangleIntersection_10(double rect1_center_x, double rect1_center_y, double rect1_size_width, double rect1_size_height, double rect1_angle, double rect2_center_x, double rect2_center_y, double rect2_size_width, double rect2_size_height, double rect2_angle, IntPtr intersectingRegion_nativeObj); // C++: Ptr_GeneralizedHoughBallard cv::createGeneralizedHoughBallard() [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createGeneralizedHoughBallard_10(); // C++: Ptr_GeneralizedHoughGuil cv::createGeneralizedHoughGuil() [DllImport(LIBNAME)] private static extern IntPtr imgproc_Imgproc_createGeneralizedHoughGuil_10(); // C++: void cv::applyColorMap(Mat src, Mat& dst, int colormap) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_applyColorMap_10(IntPtr src_nativeObj, IntPtr dst_nativeObj, int colormap); // C++: void cv::applyColorMap(Mat src, Mat& dst, Mat userColor) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_applyColorMap_11(IntPtr src_nativeObj, IntPtr dst_nativeObj, IntPtr userColor_nativeObj); // C++: void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_line_10(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_line_11(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_line_12(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_line_13(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_arrowedLine_10(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift, double tipLength); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_arrowedLine_11(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_arrowedLine_12(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int line_type); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_arrowedLine_13(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_arrowedLine_14(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_10(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_11(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_12(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_13(IntPtr img_nativeObj, double pt1_x, double pt1_y, double pt2_x, double pt2_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::rectangle(Mat& img, Rect rec, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_14(IntPtr img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_15(IntPtr img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_16(IntPtr img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_rectangle_17(IntPtr img_nativeObj, int rec_x, int rec_y, int rec_width, int rec_height, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_circle_10(IntPtr img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_circle_11(IntPtr img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_circle_12(IntPtr img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_circle_13(IntPtr img_nativeObj, double center_x, double center_y, int radius, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_10(IntPtr img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_11(IntPtr img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_12(IntPtr img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_13(IntPtr img_nativeObj, double center_x, double center_y, double axes_width, double axes_height, double angle, double startAngle, double endAngle, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, int lineType = LINE_8) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_14(IntPtr img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_15(IntPtr img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse_16(IntPtr img_nativeObj, double box_center_x, double box_center_y, double box_size_width, double box_size_height, double box_angle, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::drawMarker(Mat& img, Point position, Scalar color, int markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, int line_type = 8) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawMarker_10(IntPtr img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness, int line_type); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawMarker_11(IntPtr img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawMarker_12(IntPtr img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType, int markerSize); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawMarker_13(IntPtr img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3, int markerType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawMarker_14(IntPtr img_nativeObj, double position_x, double position_y, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillConvexPoly_10(IntPtr img_nativeObj, IntPtr points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillConvexPoly_11(IntPtr img_nativeObj, IntPtr points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillConvexPoly_12(IntPtr img_nativeObj, IntPtr points_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, int lineType = LINE_8, int shift = 0, Point offset = Point()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillPoly_10(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift, double offset_x, double offset_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillPoly_11(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillPoly_12(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_fillPoly_13(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, int lineType = LINE_8, int shift = 0) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_polylines_10(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, int shift); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_polylines_11(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_polylines_12(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool isClosed, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_polylines_13(IntPtr img_nativeObj, IntPtr pts_mat_nativeObj, [MarshalAs(UnmanagedType.U1)] bool isClosed, double color_val0, double color_val1, double color_val2, double color_val3); // C++: void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, int lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point()) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_10(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, IntPtr hierarchy_nativeObj, int maxLevel, double offset_x, double offset_y); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_11(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, IntPtr hierarchy_nativeObj, int maxLevel); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_12(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, IntPtr hierarchy_nativeObj); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_13(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_14(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_drawContours_15(IntPtr image_nativeObj, IntPtr contours_mat_nativeObj, int contourIdx, double color_val0, double color_val1, double color_val2, double color_val3); // C++: bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2) [DllImport(LIBNAME)] [return: MarshalAs(UnmanagedType.U1)] private static extern bool imgproc_Imgproc_clipLine_10(int imgRect_x, int imgRect_y, int imgRect_width, int imgRect_height, double pt1_x, double pt1_y, double[] pt1_out, double pt2_x, double pt2_y, double[] pt2_out); // C++: void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_ellipse2Poly_10(double center_x, double center_y, double axes_width, double axes_height, int angle, int arcStart, int arcEnd, int delta, IntPtr pts_mat_nativeObj); // C++: void cv::putText(Mat& img, String text, Point org, int fontFace, double fontScale, Scalar color, int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_putText_10(IntPtr img_nativeObj, string text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType, [MarshalAs(UnmanagedType.U1)] bool bottomLeftOrigin); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_putText_11(IntPtr img_nativeObj, string text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness, int lineType); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_putText_12(IntPtr img_nativeObj, string text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3, int thickness); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_putText_13(IntPtr img_nativeObj, string text, double org_x, double org_y, int fontFace, double fontScale, double color_val0, double color_val1, double color_val2, double color_val3); // C++: double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1) [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_getFontScaleFromHeight_10(int fontFace, int pixelHeight, int thickness); [DllImport(LIBNAME)] private static extern double imgproc_Imgproc_getFontScaleFromHeight_11(int fontFace, int pixelHeight); // C++: void cv::HoughLinesWithAccumulator(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI) [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesWithAccumulator_10(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta, double max_theta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesWithAccumulator_11(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn, double min_theta); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesWithAccumulator_12(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn, double stn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesWithAccumulator_13(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold, double srn); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_HoughLinesWithAccumulator_14(IntPtr image_nativeObj, IntPtr lines_nativeObj, double rho, double theta, int threshold); [DllImport(LIBNAME)] private static extern void imgproc_Imgproc_n_1getTextSize(string text, int fontFace, double fontScale, int thickness, int[] baseLine, double[] vals); } }