

Procedural UI Image

Documentation

Product Overview
Procedural UI Image​ is an extension of the standard Image component of Unity UI.
Procedural Image component does not use an image sprite, but instead renders a sprite in
real time with given parameters. It is inspired by the styling possibilities of CSS & HTML for
boxes. It is perfect for creating flat design styled UI without all the sprites created in an Image
Editor outside of Unity. Another great thing about ​Procedural UI Image​: You can animate the
Properties like Border-Width or Border-Radius to create cool looking effects for an interactive
UI.

Components:
To use ​Procedural UI Image​ simply import the ​Procedural UI Image​ package into your
Project. All files of this package can now be found in ​“Assets/ProceduralUIImage”​ folder. To
add a procedural Image right-click in the Hierarchy window and choose​ “UI/Procedural
Image”​.

Procedural Image component

Properties:
■ Color, Raycast Target:​ Work the same as in UI Image component.
■ Image Type: ​Filled ​and ​Simple ​are identical to UI Image. ​Sliced ​and ​Tiled ​have no

effect and will result in the same behaviour as ​Simple​.
■ Modifier Type: ​Current modifier type. For more Information on modifiers see below.
■ Border Width:​ Controls the thickness of Outline in pixels. A value of 0 results in a solid

filled graphic.
■ Falloff Distance:​ The distance of linear falloff around the edges. The default value of 1

gives a nice sharp but antialiased look. Values greater than 1 can be used to create
blurred shadow effects.

2

Modifier component
Modifiers are a flexible and powerful way to control the ​border radius. ​The most basic and
default Modifier is the Free-Modifier. If you want to define your own Modifiers, you can! See in
“Create custom modifiers” below.

The built-in Modifiers are:

■ Free: ​ It simply lets you control all 4 border-radiuses individually.
■ Only One Side:​ Sets same radius for two corners of same edge.
■ Round​: Uses half width or half height as the border-radius. The Image will always have

round caps. If Image is square shaped, Round modifier will give a perfect circle.
■ Uniform​: Sets the same border-radius for all four corners.

3

Create custom modifiers
[At least some beginner knowledge at programming needed]
Extending the functionality of ​Procedural UI Image ​by scripting new modifiers is easy to do.

using ​UnityEngine;
using ​System.Collections;

[​ModifierID​(​"Modifier Name"​)]
public class ​CustomModifier ​:​ ​ProceduralImageModifier ​{

#region implemented abstract members of ProceduralImageModifier
public override ​Vector4 ​CalculateRadius (​Rect​ imageRect){

 ​//Do whatever math you want
 //Return some Vector4 with the border radiuses.
}
#endregion

}

A Modifier is a class that derives from ​ProceduralImageModifier ​and must implement a
public method ​CalculateRadius(Rect ​imageRect​)​. The parameter ​imageRect ​contains the
position and size of the Procedural Image. You can use that information to calculate a radius
relative to the image size (as Round-Modifier does). ​ProceduralImageModifier​ derives from
MonoBehaviour ​so you can use the standard methods like Update() and Start().
Important: The returned Vector4 (x,y,z,w) contains the four radiuses in pixels, where ​x​ ​is the
upper left,​ ​y​ ​the upper right, ​z​ ​the lower right, ​w ​the lower left corner (clockwise).

Premade example code:
To get started with your custom modifier you can open
“​ProceduralUIImage/Scripts/Modifiers/CustomPremadeModifier.cs​”. Uncomment the code
and modify it to your needs.

Feedback | Support | Feature requests
Feel free to contact me and let me know what you think or need.
Have fun with Procedural UI Image!

Josh H
assetstore.joshh@gmail.com

