123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- using System;
- using Org.BouncyCastle.Math.EC.Abc;
- namespace Org.BouncyCastle.Math.EC.Multiplier
- {
- /**
- * Class implementing the WTNAF (Window
- * <code>τ</code>-adic Non-Adjacent Form) algorithm.
- */
- public class WTauNafMultiplier
- : AbstractECMultiplier
- {
- // TODO Create WTauNafUtilities class and move various functionality into it
- internal static readonly string PRECOMP_NAME = "bc_wtnaf";
- /**
- * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
- * by <code>k</code> using the reduced <code>τ</code>-adic NAF (RTNAF)
- * method.
- * @param p The AbstractF2mPoint to multiply.
- * @param k The integer by which to multiply <code>k</code>.
- * @return <code>p</code> multiplied by <code>k</code>.
- */
- protected override ECPoint MultiplyPositive(ECPoint point, BigInteger k)
- {
- if (!(point is AbstractF2mPoint))
- throw new ArgumentException("Only AbstractF2mPoint can be used in WTauNafMultiplier");
- AbstractF2mPoint p = (AbstractF2mPoint)point;
- AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
- int m = curve.FieldSize;
- sbyte a = (sbyte)curve.A.ToBigInteger().IntValue;
- sbyte mu = Tnaf.GetMu(a);
- BigInteger[] s = curve.GetSi();
- ZTauElement rho = Tnaf.PartModReduction(k, m, a, s, mu, (sbyte)10);
- return MultiplyWTnaf(p, rho, curve.GetPreCompInfo(p, PRECOMP_NAME), a, mu);
- }
- /**
- * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
- * by an element <code>λ</code> of <code><b>Z</b>[τ]</code> using
- * the <code>τ</code>-adic NAF (TNAF) method.
- * @param p The AbstractF2mPoint to multiply.
- * @param lambda The element <code>λ</code> of
- * <code><b>Z</b>[τ]</code> of which to compute the
- * <code>[τ]</code>-adic NAF.
- * @return <code>p</code> multiplied by <code>λ</code>.
- */
- private AbstractF2mPoint MultiplyWTnaf(AbstractF2mPoint p, ZTauElement lambda,
- PreCompInfo preCompInfo, sbyte a, sbyte mu)
- {
- ZTauElement[] alpha = (a == 0) ? Tnaf.Alpha0 : Tnaf.Alpha1;
- BigInteger tw = Tnaf.GetTw(mu, Tnaf.Width);
- sbyte[]u = Tnaf.TauAdicWNaf(mu, lambda, Tnaf.Width,
- BigInteger.ValueOf(Tnaf.Pow2Width), tw, alpha);
- return MultiplyFromWTnaf(p, u, preCompInfo);
- }
-
- /**
- * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
- * by an element <code>λ</code> of <code><b>Z</b>[τ]</code>
- * using the window <code>τ</code>-adic NAF (TNAF) method, given the
- * WTNAF of <code>λ</code>.
- * @param p The AbstractF2mPoint to multiply.
- * @param u The the WTNAF of <code>λ</code>..
- * @return <code>λ * p</code>
- */
- private static AbstractF2mPoint MultiplyFromWTnaf(AbstractF2mPoint p, sbyte[] u, PreCompInfo preCompInfo)
- {
- AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
- sbyte a = (sbyte)curve.A.ToBigInteger().IntValue;
- AbstractF2mPoint[] pu;
- if ((preCompInfo == null) || !(preCompInfo is WTauNafPreCompInfo))
- {
- pu = Tnaf.GetPreComp(p, a);
- WTauNafPreCompInfo pre = new WTauNafPreCompInfo();
- pre.PreComp = pu;
- curve.SetPreCompInfo(p, PRECOMP_NAME, pre);
- }
- else
- {
- pu = ((WTauNafPreCompInfo)preCompInfo).PreComp;
- }
- // TODO Include negations in precomp (optionally) and use from here
- AbstractF2mPoint[] puNeg = new AbstractF2mPoint[pu.Length];
- for (int i = 0; i < pu.Length; ++i)
- {
- puNeg[i] = (AbstractF2mPoint)pu[i].Negate();
- }
-
- // q = infinity
- AbstractF2mPoint q = (AbstractF2mPoint) p.Curve.Infinity;
- int tauCount = 0;
- for (int i = u.Length - 1; i >= 0; i--)
- {
- ++tauCount;
- int ui = u[i];
- if (ui != 0)
- {
- q = q.TauPow(tauCount);
- tauCount = 0;
- ECPoint x = ui > 0 ? pu[ui >> 1] : puNeg[(-ui) >> 1];
- q = (AbstractF2mPoint)q.Add(x);
- }
- }
- if (tauCount > 0)
- {
- q = q.TauPow(tauCount);
- }
- return q;
- }
- }
- }
- #endif
|