1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- using System;
- using System.Collections;
- using Org.BouncyCastle.Math.EC.Abc;
- using Org.BouncyCastle.Math.EC.Endo;
- using Org.BouncyCastle.Math.EC.Multiplier;
- using Org.BouncyCastle.Math.Field;
- using Org.BouncyCastle.Utilities;
- namespace Org.BouncyCastle.Math.EC
- {
- /// <remarks>Base class for an elliptic curve.</remarks>
- public abstract class ECCurve
- {
- public const int COORD_AFFINE = 0;
- public const int COORD_HOMOGENEOUS = 1;
- public const int COORD_JACOBIAN = 2;
- public const int COORD_JACOBIAN_CHUDNOVSKY = 3;
- public const int COORD_JACOBIAN_MODIFIED = 4;
- public const int COORD_LAMBDA_AFFINE = 5;
- public const int COORD_LAMBDA_PROJECTIVE = 6;
- public const int COORD_SKEWED = 7;
- public static int[] GetAllCoordinateSystems()
- {
- return new int[]{ COORD_AFFINE, COORD_HOMOGENEOUS, COORD_JACOBIAN, COORD_JACOBIAN_CHUDNOVSKY,
- COORD_JACOBIAN_MODIFIED, COORD_LAMBDA_AFFINE, COORD_LAMBDA_PROJECTIVE, COORD_SKEWED };
- }
- public class Config
- {
- protected ECCurve outer;
- protected int coord;
- protected ECEndomorphism endomorphism;
- protected ECMultiplier multiplier;
- internal Config(ECCurve outer, int coord, ECEndomorphism endomorphism, ECMultiplier multiplier)
- {
- this.outer = outer;
- this.coord = coord;
- this.endomorphism = endomorphism;
- this.multiplier = multiplier;
- }
- public Config SetCoordinateSystem(int coord)
- {
- this.coord = coord;
- return this;
- }
- public Config SetEndomorphism(ECEndomorphism endomorphism)
- {
- this.endomorphism = endomorphism;
- return this;
- }
- public Config SetMultiplier(ECMultiplier multiplier)
- {
- this.multiplier = multiplier;
- return this;
- }
- public ECCurve Create()
- {
- if (!outer.SupportsCoordinateSystem(coord))
- {
- throw new InvalidOperationException("unsupported coordinate system");
- }
- ECCurve c = outer.CloneCurve();
- if (c == outer)
- {
- throw new InvalidOperationException("implementation returned current curve");
- }
- c.m_coord = coord;
- c.m_endomorphism = endomorphism;
- c.m_multiplier = multiplier;
- return c;
- }
- }
- protected readonly IFiniteField m_field;
- protected ECFieldElement m_a, m_b;
- protected BigInteger m_order, m_cofactor;
- protected int m_coord = COORD_AFFINE;
- protected ECEndomorphism m_endomorphism = null;
- protected ECMultiplier m_multiplier = null;
- protected ECCurve(IFiniteField field)
- {
- this.m_field = field;
- }
- public abstract int FieldSize { get; }
- public abstract ECFieldElement FromBigInteger(BigInteger x);
- public abstract bool IsValidFieldElement(BigInteger x);
- public virtual Config Configure()
- {
- return new Config(this, this.m_coord, this.m_endomorphism, this.m_multiplier);
- }
- public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y)
- {
- ECPoint p = CreatePoint(x, y);
- if (!p.IsValid())
- {
- throw new ArgumentException("Invalid point coordinates");
- }
- return p;
- }
- public virtual ECPoint ValidatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- ECPoint p = CreatePoint(x, y, withCompression);
- if (!p.IsValid())
- {
- throw new ArgumentException("Invalid point coordinates");
- }
- return p;
- }
- public virtual ECPoint CreatePoint(BigInteger x, BigInteger y)
- {
- return CreatePoint(x, y, false);
- }
- public virtual ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- return CreateRawPoint(FromBigInteger(x), FromBigInteger(y), withCompression);
- }
- protected abstract ECCurve CloneCurve();
- protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression);
- protected internal abstract ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression);
- protected virtual ECMultiplier CreateDefaultMultiplier()
- {
- GlvEndomorphism glvEndomorphism = m_endomorphism as GlvEndomorphism;
- if (glvEndomorphism != null)
- {
- return new GlvMultiplier(this, glvEndomorphism);
- }
- return new WNafL2RMultiplier();
- }
- public virtual bool SupportsCoordinateSystem(int coord)
- {
- return coord == COORD_AFFINE;
- }
- public virtual PreCompInfo GetPreCompInfo(ECPoint point, string name)
- {
- CheckPoint(point);
- lock (point)
- {
- IDictionary table = point.m_preCompTable;
- return table == null ? null : (PreCompInfo)table[name];
- }
- }
- /**
- * Adds <code>PreCompInfo</code> for a point on this curve, under a given name. Used by
- * <code>ECMultiplier</code>s to save the precomputation for this <code>ECPoint</code> for use
- * by subsequent multiplication.
- *
- * @param point
- * The <code>ECPoint</code> to store precomputations for.
- * @param name
- * A <code>String</code> used to index precomputations of different types.
- * @param preCompInfo
- * The values precomputed by the <code>ECMultiplier</code>.
- */
- public virtual void SetPreCompInfo(ECPoint point, string name, PreCompInfo preCompInfo)
- {
- CheckPoint(point);
- lock (point)
- {
- IDictionary table = point.m_preCompTable;
- if (null == table)
- {
- point.m_preCompTable = table = Org.BouncyCastle.Utilities.Platform.CreateHashtable(4);
- }
- table[name] = preCompInfo;
- }
- }
- public virtual ECPoint ImportPoint(ECPoint p)
- {
- if (this == p.Curve)
- {
- return p;
- }
- if (p.IsInfinity)
- {
- return Infinity;
- }
- // TODO Default behaviour could be improved if the two curves have the same coordinate system by copying any Z coordinates.
- p = p.Normalize();
- return ValidatePoint(p.XCoord.ToBigInteger(), p.YCoord.ToBigInteger(), p.IsCompressed);
- }
- /**
- * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
- * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
- * than one point is to be normalized, this method will generally be more efficient than
- * normalizing each point separately.
- *
- * @param points
- * An array of points that will be updated in place with their normalized versions,
- * where necessary
- */
- public virtual void NormalizeAll(ECPoint[] points)
- {
- NormalizeAll(points, 0, points.Length, null);
- }
- /**
- * Normalization ensures that any projective coordinate is 1, and therefore that the x, y
- * coordinates reflect those of the equivalent point in an affine coordinate system. Where more
- * than one point is to be normalized, this method will generally be more efficient than
- * normalizing each point separately. An (optional) z-scaling factor can be applied; effectively
- * each z coordinate is scaled by this value prior to normalization (but only one
- * actual multiplication is needed).
- *
- * @param points
- * An array of points that will be updated in place with their normalized versions,
- * where necessary
- * @param off
- * The start of the range of points to normalize
- * @param len
- * The length of the range of points to normalize
- * @param iso
- * The (optional) z-scaling factor - can be null
- */
- public virtual void NormalizeAll(ECPoint[] points, int off, int len, ECFieldElement iso)
- {
- CheckPoints(points, off, len);
- switch (this.CoordinateSystem)
- {
- case ECCurve.COORD_AFFINE:
- case ECCurve.COORD_LAMBDA_AFFINE:
- {
- if (iso != null)
- throw new ArgumentException("not valid for affine coordinates", "iso");
- return;
- }
- }
- /*
- * Figure out which of the points actually need to be normalized
- */
- ECFieldElement[] zs = new ECFieldElement[len];
- int[] indices = new int[len];
- int count = 0;
- for (int i = 0; i < len; ++i)
- {
- ECPoint p = points[off + i];
- if (null != p && (iso != null || !p.IsNormalized()))
- {
- zs[count] = p.GetZCoord(0);
- indices[count++] = off + i;
- }
- }
- if (count == 0)
- {
- return;
- }
- ECAlgorithms.MontgomeryTrick(zs, 0, count, iso);
- for (int j = 0; j < count; ++j)
- {
- int index = indices[j];
- points[index] = points[index].Normalize(zs[j]);
- }
- }
- public abstract ECPoint Infinity { get; }
- public virtual IFiniteField Field
- {
- get { return m_field; }
- }
- public virtual ECFieldElement A
- {
- get { return m_a; }
- }
- public virtual ECFieldElement B
- {
- get { return m_b; }
- }
- public virtual BigInteger Order
- {
- get { return m_order; }
- }
- public virtual BigInteger Cofactor
- {
- get { return m_cofactor; }
- }
- public virtual int CoordinateSystem
- {
- get { return m_coord; }
- }
- protected virtual void CheckPoint(ECPoint point)
- {
- if (null == point || (this != point.Curve))
- throw new ArgumentException("must be non-null and on this curve", "point");
- }
- protected virtual void CheckPoints(ECPoint[] points)
- {
- CheckPoints(points, 0, points.Length);
- }
- protected virtual void CheckPoints(ECPoint[] points, int off, int len)
- {
- if (points == null)
- throw new ArgumentNullException("points");
- if (off < 0 || len < 0 || (off > (points.Length - len)))
- throw new ArgumentException("invalid range specified", "points");
- for (int i = 0; i < len; ++i)
- {
- ECPoint point = points[off + i];
- if (null != point && this != point.Curve)
- throw new ArgumentException("entries must be null or on this curve", "points");
- }
- }
- public virtual bool Equals(ECCurve other)
- {
- if (this == other)
- return true;
- if (null == other)
- return false;
- return Field.Equals(other.Field)
- && A.ToBigInteger().Equals(other.A.ToBigInteger())
- && B.ToBigInteger().Equals(other.B.ToBigInteger());
- }
- public override bool Equals(object obj)
- {
- return Equals(obj as ECCurve);
- }
- public override int GetHashCode()
- {
- return Field.GetHashCode()
- ^ Integers.RotateLeft(A.ToBigInteger().GetHashCode(), 8)
- ^ Integers.RotateLeft(B.ToBigInteger().GetHashCode(), 16);
- }
- protected abstract ECPoint DecompressPoint(int yTilde, BigInteger X1);
- public virtual ECEndomorphism GetEndomorphism()
- {
- return m_endomorphism;
- }
- /**
- * Sets the default <code>ECMultiplier</code>, unless already set.
- */
- public virtual ECMultiplier GetMultiplier()
- {
- lock (this)
- {
- if (this.m_multiplier == null)
- {
- this.m_multiplier = CreateDefaultMultiplier();
- }
- return this.m_multiplier;
- }
- }
- /**
- * Decode a point on this curve from its ASN.1 encoding. The different
- * encodings are taken account of, including point compression for
- * <code>F<sub>p</sub></code> (X9.62 s 4.2.1 pg 17).
- * @return The decoded point.
- */
- public virtual ECPoint DecodePoint(byte[] encoded)
- {
- ECPoint p = null;
- int expectedLength = (FieldSize + 7) / 8;
- byte type = encoded[0];
- switch (type)
- {
- case 0x00: // infinity
- {
- if (encoded.Length != 1)
- throw new ArgumentException("Incorrect length for infinity encoding", "encoded");
- p = Infinity;
- break;
- }
- case 0x02: // compressed
- case 0x03: // compressed
- {
- if (encoded.Length != (expectedLength + 1))
- throw new ArgumentException("Incorrect length for compressed encoding", "encoded");
- int yTilde = type & 1;
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- p = DecompressPoint(yTilde, X);
- if (!p.SatisfiesCofactor())
- throw new ArgumentException("Invalid point");
- break;
- }
- case 0x04: // uncompressed
- {
- if (encoded.Length != (2 * expectedLength + 1))
- throw new ArgumentException("Incorrect length for uncompressed encoding", "encoded");
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);
- p = ValidatePoint(X, Y);
- break;
- }
- case 0x06: // hybrid
- case 0x07: // hybrid
- {
- if (encoded.Length != (2 * expectedLength + 1))
- throw new ArgumentException("Incorrect length for hybrid encoding", "encoded");
- BigInteger X = new BigInteger(1, encoded, 1, expectedLength);
- BigInteger Y = new BigInteger(1, encoded, 1 + expectedLength, expectedLength);
- if (Y.TestBit(0) != (type == 0x07))
- throw new ArgumentException("Inconsistent Y coordinate in hybrid encoding", "encoded");
- p = ValidatePoint(X, Y);
- break;
- }
- default:
- throw new FormatException("Invalid point encoding " + type);
- }
- if (type != 0x00 && p.IsInfinity)
- throw new ArgumentException("Invalid infinity encoding", "encoded");
- return p;
- }
- }
- public abstract class AbstractFpCurve
- : ECCurve
- {
- protected AbstractFpCurve(BigInteger q)
- : base(FiniteFields.GetPrimeField(q))
- {
- }
- public override bool IsValidFieldElement(BigInteger x)
- {
- return x != null && x.SignValue >= 0 && x.CompareTo(Field.Characteristic) < 0;
- }
- protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
- {
- ECFieldElement x = FromBigInteger(X1);
- ECFieldElement rhs = x.Square().Add(A).Multiply(x).Add(B);
- ECFieldElement y = rhs.Sqrt();
- /*
- * If y is not a square, then we haven't got a point on the curve
- */
- if (y == null)
- throw new ArgumentException("Invalid point compression");
- if (y.TestBitZero() != (yTilde == 1))
- {
- // Use the other root
- y = y.Negate();
- }
- return CreateRawPoint(x, y, true);
- }
- }
- /**
- * Elliptic curve over Fp
- */
- public class FpCurve
- : AbstractFpCurve
- {
- private const int FP_DEFAULT_COORDS = COORD_JACOBIAN_MODIFIED;
- protected readonly BigInteger m_q, m_r;
- protected readonly FpPoint m_infinity;
- public FpCurve(BigInteger q, BigInteger a, BigInteger b)
- : this(q, a, b, null, null)
- {
- }
- public FpCurve(BigInteger q, BigInteger a, BigInteger b, BigInteger order, BigInteger cofactor)
- : base(q)
- {
- this.m_q = q;
- this.m_r = FpFieldElement.CalculateResidue(q);
- this.m_infinity = new FpPoint(this, null, null);
- this.m_a = FromBigInteger(a);
- this.m_b = FromBigInteger(b);
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_coord = FP_DEFAULT_COORDS;
- }
- protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b)
- : this(q, r, a, b, null, null)
- {
- }
- protected FpCurve(BigInteger q, BigInteger r, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
- : base(q)
- {
- this.m_q = q;
- this.m_r = r;
- this.m_infinity = new FpPoint(this, null, null);
- this.m_a = a;
- this.m_b = b;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_coord = FP_DEFAULT_COORDS;
- }
- protected override ECCurve CloneCurve()
- {
- return new FpCurve(m_q, m_r, m_a, m_b, m_order, m_cofactor);
- }
- public override bool SupportsCoordinateSystem(int coord)
- {
- switch (coord)
- {
- case COORD_AFFINE:
- case COORD_HOMOGENEOUS:
- case COORD_JACOBIAN:
- case COORD_JACOBIAN_MODIFIED:
- return true;
- default:
- return false;
- }
- }
- public virtual BigInteger Q
- {
- get { return m_q; }
- }
- public override ECPoint Infinity
- {
- get { return m_infinity; }
- }
- public override int FieldSize
- {
- get { return m_q.BitLength; }
- }
- public override ECFieldElement FromBigInteger(BigInteger x)
- {
- return new FpFieldElement(this.m_q, this.m_r, x);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
- {
- return new FpPoint(this, x, y, withCompression);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
- {
- return new FpPoint(this, x, y, zs, withCompression);
- }
- public override ECPoint ImportPoint(ECPoint p)
- {
- if (this != p.Curve && this.CoordinateSystem == COORD_JACOBIAN && !p.IsInfinity)
- {
- switch (p.Curve.CoordinateSystem)
- {
- case COORD_JACOBIAN:
- case COORD_JACOBIAN_CHUDNOVSKY:
- case COORD_JACOBIAN_MODIFIED:
- return new FpPoint(this,
- FromBigInteger(p.RawXCoord.ToBigInteger()),
- FromBigInteger(p.RawYCoord.ToBigInteger()),
- new ECFieldElement[] { FromBigInteger(p.GetZCoord(0).ToBigInteger()) },
- p.IsCompressed);
- default:
- break;
- }
- }
- return base.ImportPoint(p);
- }
- }
- public abstract class AbstractF2mCurve
- : ECCurve
- {
- public static BigInteger Inverse(int m, int[] ks, BigInteger x)
- {
- return new LongArray(x).ModInverse(m, ks).ToBigInteger();
- }
- /**
- * The auxiliary values <code>s<sub>0</sub></code> and
- * <code>s<sub>1</sub></code> used for partial modular reduction for
- * Koblitz curves.
- */
- private BigInteger[] si = null;
- private static IFiniteField BuildField(int m, int k1, int k2, int k3)
- {
- if (k1 == 0)
- {
- throw new ArgumentException("k1 must be > 0");
- }
- if (k2 == 0)
- {
- if (k3 != 0)
- {
- throw new ArgumentException("k3 must be 0 if k2 == 0");
- }
- return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, m });
- }
- if (k2 <= k1)
- {
- throw new ArgumentException("k2 must be > k1");
- }
- if (k3 <= k2)
- {
- throw new ArgumentException("k3 must be > k2");
- }
- return FiniteFields.GetBinaryExtensionField(new int[]{ 0, k1, k2, k3, m });
- }
- protected AbstractF2mCurve(int m, int k1, int k2, int k3)
- : base(BuildField(m, k1, k2, k3))
- {
- }
- public override bool IsValidFieldElement(BigInteger x)
- {
- return x != null && x.SignValue >= 0 && x.BitLength <= FieldSize;
- }
- public override ECPoint CreatePoint(BigInteger x, BigInteger y, bool withCompression)
- {
- ECFieldElement X = FromBigInteger(x), Y = FromBigInteger(y);
- switch (this.CoordinateSystem)
- {
- case COORD_LAMBDA_AFFINE:
- case COORD_LAMBDA_PROJECTIVE:
- {
- if (X.IsZero)
- {
- if (!Y.Square().Equals(B))
- throw new ArgumentException();
- }
- else
- {
- // Y becomes Lambda (X + Y/X) here
- Y = Y.Divide(X).Add(X);
- }
- break;
- }
- default:
- {
- break;
- }
- }
- return CreateRawPoint(X, Y, withCompression);
- }
- protected override ECPoint DecompressPoint(int yTilde, BigInteger X1)
- {
- ECFieldElement xp = FromBigInteger(X1), yp = null;
- if (xp.IsZero)
- {
- yp = B.Sqrt();
- }
- else
- {
- ECFieldElement beta = xp.Square().Invert().Multiply(B).Add(A).Add(xp);
- ECFieldElement z = SolveQuadradicEquation(beta);
- if (z != null)
- {
- if (z.TestBitZero() != (yTilde == 1))
- {
- z = z.AddOne();
- }
- switch (this.CoordinateSystem)
- {
- case COORD_LAMBDA_AFFINE:
- case COORD_LAMBDA_PROJECTIVE:
- {
- yp = z.Add(xp);
- break;
- }
- default:
- {
- yp = z.Multiply(xp);
- break;
- }
- }
- }
- }
- if (yp == null)
- throw new ArgumentException("Invalid point compression");
- return CreateRawPoint(xp, yp, true);
- }
- /**
- * Solves a quadratic equation <code>z<sup>2</sup> + z = beta</code>(X9.62
- * D.1.6) The other solution is <code>z + 1</code>.
- *
- * @param beta
- * The value to solve the qradratic equation for.
- * @return the solution for <code>z<sup>2</sup> + z = beta</code> or
- * <code>null</code> if no solution exists.
- */
- private ECFieldElement SolveQuadradicEquation(ECFieldElement beta)
- {
- if (beta.IsZero)
- return beta;
- ECFieldElement gamma, z, zeroElement = FromBigInteger(BigInteger.Zero);
- int m = FieldSize;
- do
- {
- ECFieldElement t = FromBigInteger(BigInteger.Arbitrary(m));
- z = zeroElement;
- ECFieldElement w = beta;
- for (int i = 1; i < m; i++)
- {
- ECFieldElement w2 = w.Square();
- z = z.Square().Add(w2.Multiply(t));
- w = w2.Add(beta);
- }
- if (!w.IsZero)
- {
- return null;
- }
- gamma = z.Square().Add(z);
- }
- while (gamma.IsZero);
- return z;
- }
- /**
- * @return the auxiliary values <code>s<sub>0</sub></code> and
- * <code>s<sub>1</sub></code> used for partial modular reduction for
- * Koblitz curves.
- */
- internal virtual BigInteger[] GetSi()
- {
- if (si == null)
- {
- lock (this)
- {
- if (si == null)
- {
- si = Tnaf.GetSi(this);
- }
- }
- }
- return si;
- }
- /**
- * Returns true if this is a Koblitz curve (ABC curve).
- * @return true if this is a Koblitz curve (ABC curve), false otherwise
- */
- public virtual bool IsKoblitz
- {
- get
- {
- return m_order != null && m_cofactor != null && m_b.IsOne && (m_a.IsZero || m_a.IsOne);
- }
- }
- }
- /**
- * Elliptic curves over F2m. The Weierstrass equation is given by
- * <code>y<sup>2</sup> + xy = x<sup>3</sup> + ax<sup>2</sup> + b</code>.
- */
- public class F2mCurve
- : AbstractF2mCurve
- {
- private const int F2M_DEFAULT_COORDS = COORD_LAMBDA_PROJECTIVE;
- /**
- * The exponent <code>m</code> of <code>F<sub>2<sup>m</sup></sub></code>.
- */
- private readonly int m;
- /**
- * TPB: The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction polynomial
- * <code>f(z)</code>.<br/>
- * PPB: The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k1;
- /**
- * TPB: Always set to <code>0</code><br/>
- * PPB: The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k2;
- /**
- * TPB: Always set to <code>0</code><br/>
- * PPB: The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.<br/>
- */
- private readonly int k3;
- /**
- * The point at infinity on this curve.
- */
- protected readonly F2mPoint m_infinity;
- /**
- * Constructor for Trinomial Polynomial Basis (TPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction
- * polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- */
- public F2mCurve(
- int m,
- int k,
- BigInteger a,
- BigInteger b)
- : this(m, k, 0, 0, a, b, null, null)
- {
- }
- /**
- * Constructor for Trinomial Polynomial Basis (TPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k The integer <code>k</code> where <code>x<sup>m</sup> +
- * x<sup>k</sup> + 1</code> represents the reduction
- * polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param order The order of the main subgroup of the elliptic curve.
- * @param cofactor The cofactor of the elliptic curve, i.e.
- * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
- */
- public F2mCurve(
- int m,
- int k,
- BigInteger a,
- BigInteger b,
- BigInteger order,
- BigInteger cofactor)
- : this(m, k, 0, 0, a, b, order, cofactor)
- {
- }
- /**
- * Constructor for Pentanomial Polynomial Basis (PPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- */
- public F2mCurve(
- int m,
- int k1,
- int k2,
- int k3,
- BigInteger a,
- BigInteger b)
- : this(m, k1, k2, k3, a, b, null, null)
- {
- }
- /**
- * Constructor for Pentanomial Polynomial Basis (PPB).
- * @param m The exponent <code>m</code> of
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param k1 The integer <code>k1</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k2 The integer <code>k2</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param k3 The integer <code>k3</code> where <code>x<sup>m</sup> +
- * x<sup>k3</sup> + x<sup>k2</sup> + x<sup>k1</sup> + 1</code>
- * represents the reduction polynomial <code>f(z)</code>.
- * @param a The coefficient <code>a</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param b The coefficient <code>b</code> in the Weierstrass equation
- * for non-supersingular elliptic curves over
- * <code>F<sub>2<sup>m</sup></sub></code>.
- * @param order The order of the main subgroup of the elliptic curve.
- * @param cofactor The cofactor of the elliptic curve, i.e.
- * <code>#E<sub>a</sub>(F<sub>2<sup>m</sup></sub>) = h * n</code>.
- */
- public F2mCurve(
- int m,
- int k1,
- int k2,
- int k3,
- BigInteger a,
- BigInteger b,
- BigInteger order,
- BigInteger cofactor)
- : base(m, k1, k2, k3)
- {
- this.m = m;
- this.k1 = k1;
- this.k2 = k2;
- this.k3 = k3;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_infinity = new F2mPoint(this, null, null);
- if (k1 == 0)
- throw new ArgumentException("k1 must be > 0");
- if (k2 == 0)
- {
- if (k3 != 0)
- throw new ArgumentException("k3 must be 0 if k2 == 0");
- }
- else
- {
- if (k2 <= k1)
- throw new ArgumentException("k2 must be > k1");
- if (k3 <= k2)
- throw new ArgumentException("k3 must be > k2");
- }
- this.m_a = FromBigInteger(a);
- this.m_b = FromBigInteger(b);
- this.m_coord = F2M_DEFAULT_COORDS;
- }
- protected F2mCurve(int m, int k1, int k2, int k3, ECFieldElement a, ECFieldElement b, BigInteger order, BigInteger cofactor)
- : base(m, k1, k2, k3)
- {
- this.m = m;
- this.k1 = k1;
- this.k2 = k2;
- this.k3 = k3;
- this.m_order = order;
- this.m_cofactor = cofactor;
- this.m_infinity = new F2mPoint(this, null, null);
- this.m_a = a;
- this.m_b = b;
- this.m_coord = F2M_DEFAULT_COORDS;
- }
- protected override ECCurve CloneCurve()
- {
- return new F2mCurve(m, k1, k2, k3, m_a, m_b, m_order, m_cofactor);
- }
- public override bool SupportsCoordinateSystem(int coord)
- {
- switch (coord)
- {
- case COORD_AFFINE:
- case COORD_HOMOGENEOUS:
- case COORD_LAMBDA_PROJECTIVE:
- return true;
- default:
- return false;
- }
- }
- protected override ECMultiplier CreateDefaultMultiplier()
- {
- if (IsKoblitz)
- {
- return new WTauNafMultiplier();
- }
- return base.CreateDefaultMultiplier();
- }
- public override int FieldSize
- {
- get { return m; }
- }
- public override ECFieldElement FromBigInteger(BigInteger x)
- {
- return new F2mFieldElement(this.m, this.k1, this.k2, this.k3, x);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
- {
- return new F2mPoint(this, x, y, withCompression);
- }
- protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
- {
- return new F2mPoint(this, x, y, zs, withCompression);
- }
- public override ECPoint Infinity
- {
- get { return m_infinity; }
- }
- public int M
- {
- get { return m; }
- }
- /**
- * Return true if curve uses a Trinomial basis.
- *
- * @return true if curve Trinomial, false otherwise.
- */
- public bool IsTrinomial()
- {
- return k2 == 0 && k3 == 0;
- }
- public int K1
- {
- get { return k1; }
- }
- public int K2
- {
- get { return k2; }
- }
- public int K3
- {
- get { return k3; }
- }
- [Obsolete("Use 'Order' property instead")]
- public BigInteger N
- {
- get { return m_order; }
- }
- [Obsolete("Use 'Cofactor' property instead")]
- public BigInteger H
- {
- get { return m_cofactor; }
- }
- }
- }
- #endif
|