123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
- using System;
- using Org.BouncyCastle.Crypto.Modes;
- using Org.BouncyCastle.Crypto.Paddings;
- using Org.BouncyCastle.Crypto.Parameters;
- namespace Org.BouncyCastle.Crypto.Macs
- {
- /**
- * CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html
- * <p>
- * CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC
- * </p><p>
- * CMAC is a NIST recomendation - see
- * csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf
- * </p><p>
- * CMAC/OMAC1 is a blockcipher-based message authentication code designed and
- * analyzed by Tetsu Iwata and Kaoru Kurosawa.
- * </p><p>
- * CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message
- * Authentication Code). OMAC stands for One-Key CBC MAC.
- * </p><p>
- * It supports 128- or 64-bits block ciphers, with any key size, and returns
- * a MAC with dimension less or equal to the block size of the underlying
- * cipher.
- * </p>
- */
- public class CMac
- : IMac
- {
- private const byte CONSTANT_128 = (byte)0x87;
- private const byte CONSTANT_64 = (byte)0x1b;
- private byte[] ZEROES;
- private byte[] mac;
- private byte[] buf;
- private int bufOff;
- private IBlockCipher cipher;
- private int macSize;
- private byte[] L, Lu, Lu2;
- /**
- * create a standard MAC based on a CBC block cipher (64 or 128 bit block).
- * This will produce an authentication code the length of the block size
- * of the cipher.
- *
- * @param cipher the cipher to be used as the basis of the MAC generation.
- */
- public CMac(
- IBlockCipher cipher)
- : this(cipher, cipher.GetBlockSize() * 8)
- {
- }
- /**
- * create a standard MAC based on a block cipher with the size of the
- * MAC been given in bits.
- * <p/>
- * Note: the size of the MAC must be at least 24 bits (FIPS Publication 81),
- * or 16 bits if being used as a data authenticator (FIPS Publication 113),
- * and in general should be less than the size of the block cipher as it reduces
- * the chance of an exhaustive attack (see Handbook of Applied Cryptography).
- *
- * @param cipher the cipher to be used as the basis of the MAC generation.
- * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and @lt;= 128.
- */
- public CMac(
- IBlockCipher cipher,
- int macSizeInBits)
- {
- if ((macSizeInBits % 8) != 0)
- throw new ArgumentException("MAC size must be multiple of 8");
- if (macSizeInBits > (cipher.GetBlockSize() * 8))
- {
- throw new ArgumentException(
- "MAC size must be less or equal to "
- + (cipher.GetBlockSize() * 8));
- }
- if (cipher.GetBlockSize() != 8 && cipher.GetBlockSize() != 16)
- {
- throw new ArgumentException(
- "Block size must be either 64 or 128 bits");
- }
- this.cipher = new CbcBlockCipher(cipher);
- this.macSize = macSizeInBits / 8;
- mac = new byte[cipher.GetBlockSize()];
- buf = new byte[cipher.GetBlockSize()];
- ZEROES = new byte[cipher.GetBlockSize()];
- bufOff = 0;
- }
- public string AlgorithmName
- {
- get { return cipher.AlgorithmName; }
- }
- private static int ShiftLeft(byte[] block, byte[] output)
- {
- int i = block.Length;
- uint bit = 0;
- while (--i >= 0)
- {
- uint b = block[i];
- output[i] = (byte)((b << 1) | bit);
- bit = (b >> 7) & 1;
- }
- return (int)bit;
- }
- private static byte[] DoubleLu(byte[] input)
- {
- byte[] ret = new byte[input.Length];
- int carry = ShiftLeft(input, ret);
- int xor = input.Length == 16 ? CONSTANT_128 : CONSTANT_64;
- /*
- * NOTE: This construction is an attempt at a constant-time implementation.
- */
- ret[input.Length - 1] ^= (byte)(xor >> ((1 - carry) << 3));
- return ret;
- }
- public void Init(
- ICipherParameters parameters)
- {
- if (parameters is KeyParameter)
- {
- cipher.Init(true, parameters);
- //initializes the L, Lu, Lu2 numbers
- L = new byte[ZEROES.Length];
- cipher.ProcessBlock(ZEROES, 0, L, 0);
- Lu = DoubleLu(L);
- Lu2 = DoubleLu(Lu);
- }
- else if (parameters != null)
- {
- // CMAC mode does not permit IV to underlying CBC mode
- throw new ArgumentException("CMac mode only permits key to be set.", "parameters");
- }
- Reset();
- }
- public int GetMacSize()
- {
- return macSize;
- }
- public void Update(
- byte input)
- {
- if (bufOff == buf.Length)
- {
- cipher.ProcessBlock(buf, 0, mac, 0);
- bufOff = 0;
- }
- buf[bufOff++] = input;
- }
- public void BlockUpdate(
- byte[] inBytes,
- int inOff,
- int len)
- {
- if (len < 0)
- throw new ArgumentException("Can't have a negative input length!");
- int blockSize = cipher.GetBlockSize();
- int gapLen = blockSize - bufOff;
- if (len > gapLen)
- {
- Array.Copy(inBytes, inOff, buf, bufOff, gapLen);
- cipher.ProcessBlock(buf, 0, mac, 0);
- bufOff = 0;
- len -= gapLen;
- inOff += gapLen;
- while (len > blockSize)
- {
- cipher.ProcessBlock(inBytes, inOff, mac, 0);
- len -= blockSize;
- inOff += blockSize;
- }
- }
- Array.Copy(inBytes, inOff, buf, bufOff, len);
- bufOff += len;
- }
- public int DoFinal(
- byte[] outBytes,
- int outOff)
- {
- int blockSize = cipher.GetBlockSize();
- byte[] lu;
- if (bufOff == blockSize)
- {
- lu = Lu;
- }
- else
- {
- new ISO7816d4Padding().AddPadding(buf, bufOff);
- lu = Lu2;
- }
- for (int i = 0; i < mac.Length; i++)
- {
- buf[i] ^= lu[i];
- }
- cipher.ProcessBlock(buf, 0, mac, 0);
- Array.Copy(mac, 0, outBytes, outOff, macSize);
- Reset();
- return macSize;
- }
- /**
- * Reset the mac generator.
- */
- public void Reset()
- {
- /*
- * clean the buffer.
- */
- Array.Clear(buf, 0, buf.Length);
- bufOff = 0;
- /*
- * Reset the underlying cipher.
- */
- cipher.Reset();
- }
- }
- }
- #endif
|