RC2Engine.cs 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. #if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
  2. using System;
  3. using Org.BouncyCastle.Crypto.Parameters;
  4. using Org.BouncyCastle.Utilities;
  5. namespace Org.BouncyCastle.Crypto.Engines
  6. {
  7. /**
  8. * an implementation of RC2 as described in RFC 2268
  9. * "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
  10. */
  11. public class RC2Engine
  12. : IBlockCipher
  13. {
  14. //
  15. // the values we use for key expansion (based on the digits of PI)
  16. //
  17. private static readonly byte[] piTable =
  18. {
  19. (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
  20. (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
  21. (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
  22. (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
  23. (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
  24. (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
  25. (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
  26. (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
  27. (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
  28. (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
  29. (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
  30. (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
  31. (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
  32. (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
  33. (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
  34. (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
  35. (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
  36. (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
  37. (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
  38. (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
  39. (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
  40. (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
  41. (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
  42. (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
  43. (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
  44. (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
  45. (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
  46. (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
  47. (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
  48. (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
  49. (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
  50. (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
  51. };
  52. private const int BLOCK_SIZE = 8;
  53. private int[] workingKey;
  54. private bool encrypting;
  55. private int[] GenerateWorkingKey(
  56. byte[] key,
  57. int bits)
  58. {
  59. int x;
  60. int[] xKey = new int[128];
  61. for (int i = 0; i != key.Length; i++)
  62. {
  63. xKey[i] = key[i] & 0xff;
  64. }
  65. // Phase 1: Expand input key to 128 bytes
  66. int len = key.Length;
  67. if (len < 128)
  68. {
  69. int index = 0;
  70. x = xKey[len - 1];
  71. do
  72. {
  73. x = piTable[(x + xKey[index++]) & 255] & 0xff;
  74. xKey[len++] = x;
  75. }
  76. while (len < 128);
  77. }
  78. // Phase 2 - reduce effective key size to "bits"
  79. len = (bits + 7) >> 3;
  80. x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
  81. xKey[128 - len] = x;
  82. for (int i = 128 - len - 1; i >= 0; i--)
  83. {
  84. x = piTable[x ^ xKey[i + len]] & 0xff;
  85. xKey[i] = x;
  86. }
  87. // Phase 3 - copy to newKey in little-endian order
  88. int[] newKey = new int[64];
  89. for (int i = 0; i != newKey.Length; i++)
  90. {
  91. newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
  92. }
  93. return newKey;
  94. }
  95. /**
  96. * initialise a RC2 cipher.
  97. *
  98. * @param forEncryption whether or not we are for encryption.
  99. * @param parameters the parameters required to set up the cipher.
  100. * @exception ArgumentException if the parameters argument is
  101. * inappropriate.
  102. */
  103. public virtual void Init(
  104. bool forEncryption,
  105. ICipherParameters parameters)
  106. {
  107. this.encrypting = forEncryption;
  108. if (parameters is RC2Parameters)
  109. {
  110. RC2Parameters param = (RC2Parameters) parameters;
  111. workingKey = GenerateWorkingKey(param.GetKey(), param.EffectiveKeyBits);
  112. }
  113. else if (parameters is KeyParameter)
  114. {
  115. KeyParameter param = (KeyParameter) parameters;
  116. byte[] key = param.GetKey();
  117. workingKey = GenerateWorkingKey(key, key.Length * 8);
  118. }
  119. else
  120. {
  121. throw new ArgumentException("invalid parameter passed to RC2 init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
  122. }
  123. }
  124. public virtual void Reset()
  125. {
  126. }
  127. public virtual string AlgorithmName
  128. {
  129. get { return "RC2"; }
  130. }
  131. public virtual bool IsPartialBlockOkay
  132. {
  133. get { return false; }
  134. }
  135. public virtual int GetBlockSize()
  136. {
  137. return BLOCK_SIZE;
  138. }
  139. public virtual int ProcessBlock(
  140. byte[] input,
  141. int inOff,
  142. byte[] output,
  143. int outOff)
  144. {
  145. if (workingKey == null)
  146. throw new InvalidOperationException("RC2 engine not initialised");
  147. Check.DataLength(input, inOff, BLOCK_SIZE, "input buffer too short");
  148. Check.OutputLength(output, outOff, BLOCK_SIZE, "output buffer too short");
  149. if (encrypting)
  150. {
  151. EncryptBlock(input, inOff, output, outOff);
  152. }
  153. else
  154. {
  155. DecryptBlock(input, inOff, output, outOff);
  156. }
  157. return BLOCK_SIZE;
  158. }
  159. /**
  160. * return the result rotating the 16 bit number in x left by y
  161. */
  162. private int RotateWordLeft(
  163. int x,
  164. int y)
  165. {
  166. x &= 0xffff;
  167. return (x << y) | (x >> (16 - y));
  168. }
  169. private void EncryptBlock(
  170. byte[] input,
  171. int inOff,
  172. byte[] outBytes,
  173. int outOff)
  174. {
  175. int x76, x54, x32, x10;
  176. x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
  177. x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
  178. x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
  179. x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);
  180. for (int i = 0; i <= 16; i += 4)
  181. {
  182. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  183. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  184. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  185. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  186. }
  187. x10 += workingKey[x76 & 63];
  188. x32 += workingKey[x10 & 63];
  189. x54 += workingKey[x32 & 63];
  190. x76 += workingKey[x54 & 63];
  191. for (int i = 20; i <= 40; i += 4)
  192. {
  193. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  194. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  195. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  196. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  197. }
  198. x10 += workingKey[x76 & 63];
  199. x32 += workingKey[x10 & 63];
  200. x54 += workingKey[x32 & 63];
  201. x76 += workingKey[x54 & 63];
  202. for (int i = 44; i < 64; i += 4)
  203. {
  204. x10 = RotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i ], 1);
  205. x32 = RotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
  206. x54 = RotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
  207. x76 = RotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
  208. }
  209. outBytes[outOff + 0] = (byte)x10;
  210. outBytes[outOff + 1] = (byte)(x10 >> 8);
  211. outBytes[outOff + 2] = (byte)x32;
  212. outBytes[outOff + 3] = (byte)(x32 >> 8);
  213. outBytes[outOff + 4] = (byte)x54;
  214. outBytes[outOff + 5] = (byte)(x54 >> 8);
  215. outBytes[outOff + 6] = (byte)x76;
  216. outBytes[outOff + 7] = (byte)(x76 >> 8);
  217. }
  218. private void DecryptBlock(
  219. byte[] input,
  220. int inOff,
  221. byte[] outBytes,
  222. int outOff)
  223. {
  224. int x76, x54, x32, x10;
  225. x76 = ((input[inOff + 7] & 0xff) << 8) + (input[inOff + 6] & 0xff);
  226. x54 = ((input[inOff + 5] & 0xff) << 8) + (input[inOff + 4] & 0xff);
  227. x32 = ((input[inOff + 3] & 0xff) << 8) + (input[inOff + 2] & 0xff);
  228. x10 = ((input[inOff + 1] & 0xff) << 8) + (input[inOff + 0] & 0xff);
  229. for (int i = 60; i >= 44; i -= 4)
  230. {
  231. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  232. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  233. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  234. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  235. }
  236. x76 -= workingKey[x54 & 63];
  237. x54 -= workingKey[x32 & 63];
  238. x32 -= workingKey[x10 & 63];
  239. x10 -= workingKey[x76 & 63];
  240. for (int i = 40; i >= 20; i -= 4)
  241. {
  242. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  243. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  244. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  245. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  246. }
  247. x76 -= workingKey[x54 & 63];
  248. x54 -= workingKey[x32 & 63];
  249. x32 -= workingKey[x10 & 63];
  250. x10 -= workingKey[x76 & 63];
  251. for (int i = 16; i >= 0; i -= 4)
  252. {
  253. x76 = RotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
  254. x54 = RotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
  255. x32 = RotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
  256. x10 = RotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i ]);
  257. }
  258. outBytes[outOff + 0] = (byte)x10;
  259. outBytes[outOff + 1] = (byte)(x10 >> 8);
  260. outBytes[outOff + 2] = (byte)x32;
  261. outBytes[outOff + 3] = (byte)(x32 >> 8);
  262. outBytes[outOff + 4] = (byte)x54;
  263. outBytes[outOff + 5] = (byte)(x54 >> 8);
  264. outBytes[outOff + 6] = (byte)x76;
  265. outBytes[outOff + 7] = (byte)(x76 >> 8);
  266. }
  267. }
  268. }
  269. #endif