#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using Org.BouncyCastle.Math.EC.Abc; namespace Org.BouncyCastle.Math.EC.Multiplier { /** * Class implementing the WTNAF (Window * τ-adic Non-Adjacent Form) algorithm. */ public class WTauNafMultiplier : AbstractECMultiplier { // TODO Create WTauNafUtilities class and move various functionality into it internal static readonly string PRECOMP_NAME = "bc_wtnaf"; /** * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint} * by k using the reduced τ-adic NAF (RTNAF) * method. * @param p The AbstractF2mPoint to multiply. * @param k The integer by which to multiply k. * @return p multiplied by k. */ protected override ECPoint MultiplyPositive(ECPoint point, BigInteger k) { if (!(point is AbstractF2mPoint)) throw new ArgumentException("Only AbstractF2mPoint can be used in WTauNafMultiplier"); AbstractF2mPoint p = (AbstractF2mPoint)point; AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve; int m = curve.FieldSize; sbyte a = (sbyte)curve.A.ToBigInteger().IntValue; sbyte mu = Tnaf.GetMu(a); BigInteger[] s = curve.GetSi(); ZTauElement rho = Tnaf.PartModReduction(k, m, a, s, mu, (sbyte)10); return MultiplyWTnaf(p, rho, curve.GetPreCompInfo(p, PRECOMP_NAME), a, mu); } /** * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint} * by an element λ of Z[τ] using * the τ-adic NAF (TNAF) method. * @param p The AbstractF2mPoint to multiply. * @param lambda The element λ of * Z[τ] of which to compute the * [τ]-adic NAF. * @return p multiplied by λ. */ private AbstractF2mPoint MultiplyWTnaf(AbstractF2mPoint p, ZTauElement lambda, PreCompInfo preCompInfo, sbyte a, sbyte mu) { ZTauElement[] alpha = (a == 0) ? Tnaf.Alpha0 : Tnaf.Alpha1; BigInteger tw = Tnaf.GetTw(mu, Tnaf.Width); sbyte[]u = Tnaf.TauAdicWNaf(mu, lambda, Tnaf.Width, BigInteger.ValueOf(Tnaf.Pow2Width), tw, alpha); return MultiplyFromWTnaf(p, u, preCompInfo); } /** * Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint} * by an element λ of Z[τ] * using the window τ-adic NAF (TNAF) method, given the * WTNAF of λ. * @param p The AbstractF2mPoint to multiply. * @param u The the WTNAF of λ.. * @return λ * p */ private static AbstractF2mPoint MultiplyFromWTnaf(AbstractF2mPoint p, sbyte[] u, PreCompInfo preCompInfo) { AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve; sbyte a = (sbyte)curve.A.ToBigInteger().IntValue; AbstractF2mPoint[] pu; if ((preCompInfo == null) || !(preCompInfo is WTauNafPreCompInfo)) { pu = Tnaf.GetPreComp(p, a); WTauNafPreCompInfo pre = new WTauNafPreCompInfo(); pre.PreComp = pu; curve.SetPreCompInfo(p, PRECOMP_NAME, pre); } else { pu = ((WTauNafPreCompInfo)preCompInfo).PreComp; } // TODO Include negations in precomp (optionally) and use from here AbstractF2mPoint[] puNeg = new AbstractF2mPoint[pu.Length]; for (int i = 0; i < pu.Length; ++i) { puNeg[i] = (AbstractF2mPoint)pu[i].Negate(); } // q = infinity AbstractF2mPoint q = (AbstractF2mPoint) p.Curve.Infinity; int tauCount = 0; for (int i = u.Length - 1; i >= 0; i--) { ++tauCount; int ui = u[i]; if (ui != 0) { q = q.TauPow(tauCount); tauCount = 0; ECPoint x = ui > 0 ? pu[ui >> 1] : puNeg[(-ui) >> 1]; q = (AbstractF2mPoint)q.Add(x); } } if (tauCount > 0) { q = q.TauPow(tauCount); } return q; } } } #endif