#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
using System;
namespace Org.BouncyCastle.Math.EC.Abc
{
/**
* Class holding methods for point multiplication based on the window
* τ-adic nonadjacent form (WTNAF). The algorithms are based on the
* paper "Improved Algorithms for Arithmetic on Anomalous Binary Curves"
* by Jerome A. Solinas. The paper first appeared in the Proceedings of
* Crypto 1997.
*/
internal class Tnaf
{
private static readonly BigInteger MinusOne = BigInteger.One.Negate();
private static readonly BigInteger MinusTwo = BigInteger.Two.Negate();
private static readonly BigInteger MinusThree = BigInteger.Three.Negate();
private static readonly BigInteger Four = BigInteger.ValueOf(4);
/**
* The window width of WTNAF. The standard value of 4 is slightly less
* than optimal for running time, but keeps space requirements for
* precomputation low. For typical curves, a value of 5 or 6 results in
* a better running time. When changing this value, the
* αu
's must be computed differently, see
* e.g. "Guide to Elliptic Curve Cryptography", Darrel Hankerson,
* Alfred Menezes, Scott Vanstone, Springer-Verlag New York Inc., 2004,
* p. 121-122
*/
public const sbyte Width = 4;
/**
* 24
*/
public const sbyte Pow2Width = 16;
/**
* The αu
's for a=0
as an array
* of ZTauElement
s.
*/
public static readonly ZTauElement[] Alpha0 =
{
null,
new ZTauElement(BigInteger.One, BigInteger.Zero), null,
new ZTauElement(MinusThree, MinusOne), null,
new ZTauElement(MinusOne, MinusOne), null,
new ZTauElement(BigInteger.One, MinusOne), null
};
/**
* The αu
's for a=0
as an array
* of TNAFs.
*/
public static readonly sbyte[][] Alpha0Tnaf =
{
null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, 1}
};
/**
* The αu
's for a=1
as an array
* of ZTauElement
s.
*/
public static readonly ZTauElement[] Alpha1 =
{
null,
new ZTauElement(BigInteger.One, BigInteger.Zero), null,
new ZTauElement(MinusThree, BigInteger.One), null,
new ZTauElement(MinusOne, BigInteger.One), null,
new ZTauElement(BigInteger.One, BigInteger.One), null
};
/**
* The αu
's for a=1
as an array
* of TNAFs.
*/
public static readonly sbyte[][] Alpha1Tnaf =
{
null, new sbyte[]{1}, null, new sbyte[]{-1, 0, 1}, null, new sbyte[]{1, 0, 1}, null, new sbyte[]{-1, 0, 0, -1}
};
/**
* Computes the norm of an element λ
of
* Z[τ]
.
* @param mu The parameter μ
of the elliptic curve.
* @param lambda The element λ
of
* Z[τ]
.
* @return The norm of λ
.
*/
public static BigInteger Norm(sbyte mu, ZTauElement lambda)
{
BigInteger norm;
// s1 = u^2
BigInteger s1 = lambda.u.Multiply(lambda.u);
// s2 = u * v
BigInteger s2 = lambda.u.Multiply(lambda.v);
// s3 = 2 * v^2
BigInteger s3 = lambda.v.Multiply(lambda.v).ShiftLeft(1);
if (mu == 1)
{
norm = s1.Add(s2).Add(s3);
}
else if (mu == -1)
{
norm = s1.Subtract(s2).Add(s3);
}
else
{
throw new ArgumentException("mu must be 1 or -1");
}
return norm;
}
/**
* Computes the norm of an element λ
of
* R[τ]
, where λ = u + vτ
* and u
and u
are real numbers (elements of
* R
).
* @param mu The parameter μ
of the elliptic curve.
* @param u The real part of the element λ
of
* R[τ]
.
* @param v The τ
-adic part of the element
* λ
of R[τ]
.
* @return The norm of λ
.
*/
public static SimpleBigDecimal Norm(sbyte mu, SimpleBigDecimal u, SimpleBigDecimal v)
{
SimpleBigDecimal norm;
// s1 = u^2
SimpleBigDecimal s1 = u.Multiply(u);
// s2 = u * v
SimpleBigDecimal s2 = u.Multiply(v);
// s3 = 2 * v^2
SimpleBigDecimal s3 = v.Multiply(v).ShiftLeft(1);
if (mu == 1)
{
norm = s1.Add(s2).Add(s3);
}
else if (mu == -1)
{
norm = s1.Subtract(s2).Add(s3);
}
else
{
throw new ArgumentException("mu must be 1 or -1");
}
return norm;
}
/**
* Rounds an element λ
of R[τ]
* to an element of Z[τ]
, such that their difference
* has minimal norm. λ
is given as
* λ = λ0 + λ1τ
.
* @param lambda0 The component λ0
.
* @param lambda1 The component λ1
.
* @param mu The parameter μ
of the elliptic curve. Must
* equal 1 or -1.
* @return The rounded element of Z[τ]
.
* @throws ArgumentException if lambda0
and
* lambda1
do not have same scale.
*/
public static ZTauElement Round(SimpleBigDecimal lambda0,
SimpleBigDecimal lambda1, sbyte mu)
{
int scale = lambda0.Scale;
if (lambda1.Scale != scale)
throw new ArgumentException("lambda0 and lambda1 do not have same scale");
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger f0 = lambda0.Round();
BigInteger f1 = lambda1.Round();
SimpleBigDecimal eta0 = lambda0.Subtract(f0);
SimpleBigDecimal eta1 = lambda1.Subtract(f1);
// eta = 2*eta0 + mu*eta1
SimpleBigDecimal eta = eta0.Add(eta0);
if (mu == 1)
{
eta = eta.Add(eta1);
}
else
{
// mu == -1
eta = eta.Subtract(eta1);
}
// check1 = eta0 - 3*mu*eta1
// check2 = eta0 + 4*mu*eta1
SimpleBigDecimal threeEta1 = eta1.Add(eta1).Add(eta1);
SimpleBigDecimal fourEta1 = threeEta1.Add(eta1);
SimpleBigDecimal check1;
SimpleBigDecimal check2;
if (mu == 1)
{
check1 = eta0.Subtract(threeEta1);
check2 = eta0.Add(fourEta1);
}
else
{
// mu == -1
check1 = eta0.Add(threeEta1);
check2 = eta0.Subtract(fourEta1);
}
sbyte h0 = 0;
sbyte h1 = 0;
// if eta >= 1
if (eta.CompareTo(BigInteger.One) >= 0)
{
if (check1.CompareTo(MinusOne) < 0)
{
h1 = mu;
}
else
{
h0 = 1;
}
}
else
{
// eta < 1
if (check2.CompareTo(BigInteger.Two) >= 0)
{
h1 = mu;
}
}
// if eta < -1
if (eta.CompareTo(MinusOne) < 0)
{
if (check1.CompareTo(BigInteger.One) >= 0)
{
h1 = (sbyte)-mu;
}
else
{
h0 = -1;
}
}
else
{
// eta >= -1
if (check2.CompareTo(MinusTwo) < 0)
{
h1 = (sbyte)-mu;
}
}
BigInteger q0 = f0.Add(BigInteger.ValueOf(h0));
BigInteger q1 = f1.Add(BigInteger.ValueOf(h1));
return new ZTauElement(q0, q1);
}
/**
* Approximate division by n
. For an integer
* k
, the value λ = s k / n
is
* computed to c
bits of accuracy.
* @param k The parameter k
.
* @param s The curve parameter s0
or
* s1
.
* @param vm The Lucas Sequence element Vm
.
* @param a The parameter a
of the elliptic curve.
* @param m The bit length of the finite field
* Fm
.
* @param c The number of bits of accuracy, i.e. the scale of the returned
* SimpleBigDecimal
.
* @return The value λ = s k / n
computed to
* c
bits of accuracy.
*/
public static SimpleBigDecimal ApproximateDivisionByN(BigInteger k,
BigInteger s, BigInteger vm, sbyte a, int m, int c)
{
int _k = (m + 5)/2 + c;
BigInteger ns = k.ShiftRight(m - _k - 2 + a);
BigInteger gs = s.Multiply(ns);
BigInteger hs = gs.ShiftRight(m);
BigInteger js = vm.Multiply(hs);
BigInteger gsPlusJs = gs.Add(js);
BigInteger ls = gsPlusJs.ShiftRight(_k-c);
if (gsPlusJs.TestBit(_k-c-1))
{
// round up
ls = ls.Add(BigInteger.One);
}
return new SimpleBigDecimal(ls, c);
}
/**
* Computes the τ
-adic NAF (non-adjacent form) of an
* element λ
of Z[τ]
.
* @param mu The parameter μ
of the elliptic curve.
* @param lambda The element λ
of
* Z[τ]
.
* @return The τ
-adic NAF of λ
.
*/
public static sbyte[] TauAdicNaf(sbyte mu, ZTauElement lambda)
{
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger norm = Norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.BitLength;
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 : 34;
// The array holding the TNAF
sbyte[] u = new sbyte[maxLength];
int i = 0;
// The actual length of the TNAF
int length = 0;
BigInteger r0 = lambda.u;
BigInteger r1 = lambda.v;
while(!((r0.Equals(BigInteger.Zero)) && (r1.Equals(BigInteger.Zero))))
{
// If r0 is odd
if (r0.TestBit(0))
{
u[i] = (sbyte) BigInteger.Two.Subtract((r0.Subtract(r1.ShiftLeft(1))).Mod(Four)).IntValue;
// r0 = r0 - u[i]
if (u[i] == 1)
{
r0 = r0.ClearBit(0);
}
else
{
// u[i] == -1
r0 = r0.Add(BigInteger.One);
}
length = i;
}
else
{
u[i] = 0;
}
BigInteger t = r0;
BigInteger s = r0.ShiftRight(1);
if (mu == 1)
{
r0 = r1.Add(s);
}
else
{
// mu == -1
r0 = r1.Subtract(s);
}
r1 = t.ShiftRight(1).Negate();
i++;
}
length++;
// Reduce the TNAF array to its actual length
sbyte[] tnaf = new sbyte[length];
Array.Copy(u, 0, tnaf, 0, length);
return tnaf;
}
/**
* Applies the operation τ()
to an
* AbstractF2mPoint
.
* @param p The AbstractF2mPoint to which τ()
is applied.
* @return τ(p)
*/
public static AbstractF2mPoint Tau(AbstractF2mPoint p)
{
return p.Tau();
}
/**
* Returns the parameter μ
of the elliptic curve.
* @param curve The elliptic curve from which to obtain μ
.
* The curve must be a Koblitz curve, i.e. a
Equals
* 0
or 1
and b
Equals
* 1
.
* @return μ
of the elliptic curve.
* @throws ArgumentException if the given ECCurve is not a Koblitz
* curve.
*/
public static sbyte GetMu(AbstractF2mCurve curve)
{
BigInteger a = curve.A.ToBigInteger();
sbyte mu;
if (a.SignValue == 0)
{
mu = -1;
}
else if (a.Equals(BigInteger.One))
{
mu = 1;
}
else
{
throw new ArgumentException("No Koblitz curve (ABC), TNAF multiplication not possible");
}
return mu;
}
public static sbyte GetMu(ECFieldElement curveA)
{
return (sbyte)(curveA.IsZero ? -1 : 1);
}
public static sbyte GetMu(int curveA)
{
return (sbyte)(curveA == 0 ? -1 : 1);
}
/**
* Calculates the Lucas Sequence elements Uk-1
and
* Uk
or Vk-1
and
* Vk
.
* @param mu The parameter μ
of the elliptic curve.
* @param k The index of the second element of the Lucas Sequence to be
* returned.
* @param doV If set to true, computes Vk-1
and
* Vk
, otherwise Uk-1
and
* Uk
.
* @return An array with 2 elements, containing Uk-1
* and Uk
or Vk-1
* and Vk
.
*/
public static BigInteger[] GetLucas(sbyte mu, int k, bool doV)
{
if (!(mu == 1 || mu == -1))
throw new ArgumentException("mu must be 1 or -1");
BigInteger u0;
BigInteger u1;
BigInteger u2;
if (doV)
{
u0 = BigInteger.Two;
u1 = BigInteger.ValueOf(mu);
}
else
{
u0 = BigInteger.Zero;
u1 = BigInteger.One;
}
for (int i = 1; i < k; i++)
{
// u2 = mu*u1 - 2*u0;
BigInteger s = null;
if (mu == 1)
{
s = u1;
}
else
{
// mu == -1
s = u1.Negate();
}
u2 = s.Subtract(u0.ShiftLeft(1));
u0 = u1;
u1 = u2;
// System.out.println(i + ": " + u2);
// System.out.println();
}
BigInteger[] retVal = {u0, u1};
return retVal;
}
/**
* Computes the auxiliary value tw
. If the width is
* 4, then for mu = 1
, tw = 6
and for
* mu = -1
, tw = 10
* @param mu The parameter μ
of the elliptic curve.
* @param w The window width of the WTNAF.
* @return the auxiliary value tw
*/
public static BigInteger GetTw(sbyte mu, int w)
{
if (w == 4)
{
if (mu == 1)
{
return BigInteger.ValueOf(6);
}
else
{
// mu == -1
return BigInteger.ValueOf(10);
}
}
else
{
// For w <> 4, the values must be computed
BigInteger[] us = GetLucas(mu, w, false);
BigInteger twoToW = BigInteger.Zero.SetBit(w);
BigInteger u1invert = us[1].ModInverse(twoToW);
BigInteger tw;
tw = BigInteger.Two.Multiply(us[0]).Multiply(u1invert).Mod(twoToW);
//System.out.println("mu = " + mu);
//System.out.println("tw = " + tw);
return tw;
}
}
/**
* Computes the auxiliary values s0
and
* s1
used for partial modular reduction.
* @param curve The elliptic curve for which to compute
* s0
and s1
.
* @throws ArgumentException if curve
is not a
* Koblitz curve (Anomalous Binary Curve, ABC).
*/
public static BigInteger[] GetSi(AbstractF2mCurve curve)
{
if (!curve.IsKoblitz)
throw new ArgumentException("si is defined for Koblitz curves only");
int m = curve.FieldSize;
int a = curve.A.ToBigInteger().IntValue;
sbyte mu = GetMu(a);
int shifts = GetShiftsForCofactor(curve.Cofactor);
int index = m + 3 - a;
BigInteger[] ui = GetLucas(mu, index, false);
if (mu == 1)
{
ui[0] = ui[0].Negate();
ui[1] = ui[1].Negate();
}
BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();
return new BigInteger[] { dividend0, dividend1 };
}
public static BigInteger[] GetSi(int fieldSize, int curveA, BigInteger cofactor)
{
sbyte mu = GetMu(curveA);
int shifts = GetShiftsForCofactor(cofactor);
int index = fieldSize + 3 - curveA;
BigInteger[] ui = GetLucas(mu, index, false);
if (mu == 1)
{
ui[0] = ui[0].Negate();
ui[1] = ui[1].Negate();
}
BigInteger dividend0 = BigInteger.One.Add(ui[1]).ShiftRight(shifts);
BigInteger dividend1 = BigInteger.One.Add(ui[0]).ShiftRight(shifts).Negate();
return new BigInteger[] { dividend0, dividend1 };
}
protected static int GetShiftsForCofactor(BigInteger h)
{
if (h != null && h.BitLength < 4)
{
int hi = h.IntValue;
if (hi == 2)
return 1;
if (hi == 4)
return 2;
}
throw new ArgumentException("h (Cofactor) must be 2 or 4");
}
/**
* Partial modular reduction modulo
* (τm - 1)/(τ - 1)
.
* @param k The integer to be reduced.
* @param m The bitlength of the underlying finite field.
* @param a The parameter a
of the elliptic curve.
* @param s The auxiliary values s0
and
* s1
.
* @param mu The parameter μ of the elliptic curve.
* @param c The precision (number of bits of accuracy) of the partial
* modular reduction.
* @return ρ := k partmod (τm - 1)/(τ - 1)
*/
public static ZTauElement PartModReduction(BigInteger k, int m, sbyte a,
BigInteger[] s, sbyte mu, sbyte c)
{
// d0 = s[0] + mu*s[1]; mu is either 1 or -1
BigInteger d0;
if (mu == 1)
{
d0 = s[0].Add(s[1]);
}
else
{
d0 = s[0].Subtract(s[1]);
}
BigInteger[] v = GetLucas(mu, m, true);
BigInteger vm = v[1];
SimpleBigDecimal lambda0 = ApproximateDivisionByN(
k, s[0], vm, a, m, c);
SimpleBigDecimal lambda1 = ApproximateDivisionByN(
k, s[1], vm, a, m, c);
ZTauElement q = Round(lambda0, lambda1, mu);
// r0 = n - d0*q0 - 2*s1*q1
BigInteger r0 = k.Subtract(d0.Multiply(q.u)).Subtract(
BigInteger.ValueOf(2).Multiply(s[1]).Multiply(q.v));
// r1 = s1*q0 - s0*q1
BigInteger r1 = s[1].Multiply(q.u).Subtract(s[0].Multiply(q.v));
return new ZTauElement(r0, r1);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by a BigInteger
using the reduced τ
-adic
* NAF (RTNAF) method.
* @param p The AbstractF2mPoint to Multiply.
* @param k The BigInteger
by which to Multiply p
.
* @return k * p
*/
public static AbstractF2mPoint MultiplyRTnaf(AbstractF2mPoint p, BigInteger k)
{
AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
int m = curve.FieldSize;
int a = curve.A.ToBigInteger().IntValue;
sbyte mu = GetMu(a);
BigInteger[] s = curve.GetSi();
ZTauElement rho = PartModReduction(k, m, (sbyte)a, s, mu, (sbyte)10);
return MultiplyTnaf(p, rho);
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by an element λ
of Z[τ]
* using the τ
-adic NAF (TNAF) method.
* @param p The AbstractF2mPoint to Multiply.
* @param lambda The element λ
of
* Z[τ]
.
* @return λ * p
*/
public static AbstractF2mPoint MultiplyTnaf(AbstractF2mPoint p, ZTauElement lambda)
{
AbstractF2mCurve curve = (AbstractF2mCurve)p.Curve;
sbyte mu = GetMu(curve.A);
sbyte[] u = TauAdicNaf(mu, lambda);
AbstractF2mPoint q = MultiplyFromTnaf(p, u);
return q;
}
/**
* Multiplies a {@link org.bouncycastle.math.ec.AbstractF2mPoint AbstractF2mPoint}
* by an element λ
of Z[τ]
* using the τ
-adic NAF (TNAF) method, given the TNAF
* of λ
.
* @param p The AbstractF2mPoint to Multiply.
* @param u The the TNAF of λ
..
* @return λ * p
*/
public static AbstractF2mPoint MultiplyFromTnaf(AbstractF2mPoint p, sbyte[] u)
{
ECCurve curve = p.Curve;
AbstractF2mPoint q = (AbstractF2mPoint)curve.Infinity;
AbstractF2mPoint pNeg = (AbstractF2mPoint)p.Negate();
int tauCount = 0;
for (int i = u.Length - 1; i >= 0; i--)
{
++tauCount;
sbyte ui = u[i];
if (ui != 0)
{
q = q.TauPow(tauCount);
tauCount = 0;
ECPoint x = ui > 0 ? p : pNeg;
q = (AbstractF2mPoint)q.Add(x);
}
}
if (tauCount > 0)
{
q = q.TauPow(tauCount);
}
return q;
}
/**
* Computes the [τ]
-adic window NAF of an element
* λ
of Z[τ]
.
* @param mu The parameter μ of the elliptic curve.
* @param lambda The element λ
of
* Z[τ]
of which to compute the
* [τ]
-adic NAF.
* @param width The window width of the resulting WNAF.
* @param pow2w 2width.
* @param tw The auxiliary value tw
.
* @param alpha The αu
's for the window width.
* @return The [τ]
-adic window NAF of
* λ
.
*/
public static sbyte[] TauAdicWNaf(sbyte mu, ZTauElement lambda,
sbyte width, BigInteger pow2w, BigInteger tw, ZTauElement[] alpha)
{
if (!((mu == 1) || (mu == -1)))
throw new ArgumentException("mu must be 1 or -1");
BigInteger norm = Norm(mu, lambda);
// Ceiling of log2 of the norm
int log2Norm = norm.BitLength;
// If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52
int maxLength = log2Norm > 30 ? log2Norm + 4 + width : 34 + width;
// The array holding the TNAF
sbyte[] u = new sbyte[maxLength];
// 2^(width - 1)
BigInteger pow2wMin1 = pow2w.ShiftRight(1);
// Split lambda into two BigIntegers to simplify calculations
BigInteger r0 = lambda.u;
BigInteger r1 = lambda.v;
int i = 0;
// while lambda <> (0, 0)
while (!((r0.Equals(BigInteger.Zero))&&(r1.Equals(BigInteger.Zero))))
{
// if r0 is odd
if (r0.TestBit(0))
{
// uUnMod = r0 + r1*tw Mod 2^width
BigInteger uUnMod
= r0.Add(r1.Multiply(tw)).Mod(pow2w);
sbyte uLocal;
// if uUnMod >= 2^(width - 1)
if (uUnMod.CompareTo(pow2wMin1) >= 0)
{
uLocal = (sbyte) uUnMod.Subtract(pow2w).IntValue;
}
else
{
uLocal = (sbyte) uUnMod.IntValue;
}
// uLocal is now in [-2^(width-1), 2^(width-1)-1]
u[i] = uLocal;
bool s = true;
if (uLocal < 0)
{
s = false;
uLocal = (sbyte)-uLocal;
}
// uLocal is now >= 0
if (s)
{
r0 = r0.Subtract(alpha[uLocal].u);
r1 = r1.Subtract(alpha[uLocal].v);
}
else
{
r0 = r0.Add(alpha[uLocal].u);
r1 = r1.Add(alpha[uLocal].v);
}
}
else
{
u[i] = 0;
}
BigInteger t = r0;
if (mu == 1)
{
r0 = r1.Add(r0.ShiftRight(1));
}
else
{
// mu == -1
r0 = r1.Subtract(r0.ShiftRight(1));
}
r1 = t.ShiftRight(1).Negate();
i++;
}
return u;
}
/**
* Does the precomputation for WTNAF multiplication.
* @param p The ECPoint
for which to do the precomputation.
* @param a The parameter a
of the elliptic curve.
* @return The precomputation array for p
.
*/
public static AbstractF2mPoint[] GetPreComp(AbstractF2mPoint p, sbyte a)
{
sbyte[][] alphaTnaf = (a == 0) ? Tnaf.Alpha0Tnaf : Tnaf.Alpha1Tnaf;
AbstractF2mPoint[] pu = new AbstractF2mPoint[(uint)(alphaTnaf.Length + 1) >> 1];
pu[0] = p;
uint precompLen = (uint)alphaTnaf.Length;
for (uint i = 3; i < precompLen; i += 2)
{
pu[i >> 1] = Tnaf.MultiplyFromTnaf(p, alphaTnaf[i]);
}
p.Curve.NormalizeAll(pu);
return pu;
}
}
}
#endif