#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
using System;
using System.IO;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Crypto.Tls
{
///
/// A generic TLS 1.0-1.2 / SSLv3 block cipher. This can be used for AES or 3DES for example.
///
public class TlsBlockCipher
: TlsCipher
{
protected readonly TlsContext context;
protected readonly byte[] randomData;
protected readonly bool useExplicitIV;
protected readonly bool encryptThenMac;
protected readonly IBlockCipher encryptCipher;
protected readonly IBlockCipher decryptCipher;
protected readonly TlsMac mWriteMac;
protected readonly TlsMac mReadMac;
public virtual TlsMac WriteMac
{
get { return mWriteMac; }
}
public virtual TlsMac ReadMac
{
get { return mReadMac; }
}
///
public TlsBlockCipher(TlsContext context, IBlockCipher clientWriteCipher, IBlockCipher serverWriteCipher,
IDigest clientWriteDigest, IDigest serverWriteDigest, int cipherKeySize)
{
this.context = context;
this.randomData = new byte[256];
context.NonceRandomGenerator.NextBytes(randomData);
this.useExplicitIV = TlsUtilities.IsTlsV11(context);
this.encryptThenMac = context.SecurityParameters.encryptThenMac;
int key_block_size = (2 * cipherKeySize) + clientWriteDigest.GetDigestSize()
+ serverWriteDigest.GetDigestSize();
// From TLS 1.1 onwards, block ciphers don't need client_write_IV
if (!useExplicitIV)
{
key_block_size += clientWriteCipher.GetBlockSize() + serverWriteCipher.GetBlockSize();
}
byte[] key_block = TlsUtilities.CalculateKeyBlock(context, key_block_size);
int offset = 0;
TlsMac clientWriteMac = new TlsMac(context, clientWriteDigest, key_block, offset,
clientWriteDigest.GetDigestSize());
offset += clientWriteDigest.GetDigestSize();
TlsMac serverWriteMac = new TlsMac(context, serverWriteDigest, key_block, offset,
serverWriteDigest.GetDigestSize());
offset += serverWriteDigest.GetDigestSize();
KeyParameter client_write_key = new KeyParameter(key_block, offset, cipherKeySize);
offset += cipherKeySize;
KeyParameter server_write_key = new KeyParameter(key_block, offset, cipherKeySize);
offset += cipherKeySize;
byte[] client_write_IV, server_write_IV;
if (useExplicitIV)
{
client_write_IV = new byte[clientWriteCipher.GetBlockSize()];
server_write_IV = new byte[serverWriteCipher.GetBlockSize()];
}
else
{
client_write_IV = Arrays.CopyOfRange(key_block, offset, offset + clientWriteCipher.GetBlockSize());
offset += clientWriteCipher.GetBlockSize();
server_write_IV = Arrays.CopyOfRange(key_block, offset, offset + serverWriteCipher.GetBlockSize());
offset += serverWriteCipher.GetBlockSize();
}
if (offset != key_block_size)
{
throw new TlsFatalAlert(AlertDescription.internal_error);
}
ICipherParameters encryptParams, decryptParams;
if (context.IsServer)
{
this.mWriteMac = serverWriteMac;
this.mReadMac = clientWriteMac;
this.encryptCipher = serverWriteCipher;
this.decryptCipher = clientWriteCipher;
encryptParams = new ParametersWithIV(server_write_key, server_write_IV);
decryptParams = new ParametersWithIV(client_write_key, client_write_IV);
}
else
{
this.mWriteMac = clientWriteMac;
this.mReadMac = serverWriteMac;
this.encryptCipher = clientWriteCipher;
this.decryptCipher = serverWriteCipher;
encryptParams = new ParametersWithIV(client_write_key, client_write_IV);
decryptParams = new ParametersWithIV(server_write_key, server_write_IV);
}
this.encryptCipher.Init(true, encryptParams);
this.decryptCipher.Init(false, decryptParams);
}
public virtual int GetPlaintextLimit(int ciphertextLimit)
{
int blockSize = encryptCipher.GetBlockSize();
int macSize = mWriteMac.Size;
int plaintextLimit = ciphertextLimit;
// An explicit IV consumes 1 block
if (useExplicitIV)
{
plaintextLimit -= blockSize;
}
// Leave room for the MAC, and require block-alignment
if (encryptThenMac)
{
plaintextLimit -= macSize;
plaintextLimit -= plaintextLimit % blockSize;
}
else
{
plaintextLimit -= plaintextLimit % blockSize;
plaintextLimit -= macSize;
}
// Minimum 1 byte of padding
--plaintextLimit;
return plaintextLimit;
}
public virtual byte[] EncodePlaintext(long seqNo, byte type, byte[] plaintext, int offset, int len)
{
int blockSize = encryptCipher.GetBlockSize();
int macSize = mWriteMac.Size;
ProtocolVersion version = context.ServerVersion;
int enc_input_length = len;
if (!encryptThenMac)
{
enc_input_length += macSize;
}
int padding_length = blockSize - 1 - (enc_input_length % blockSize);
// TODO[DTLS] Consider supporting in DTLS (without exceeding send limit though)
if (!version.IsDtls && !version.IsSsl)
{
// Add a random number of extra blocks worth of padding
int maxExtraPadBlocks = (255 - padding_length) / blockSize;
int actualExtraPadBlocks = ChooseExtraPadBlocks(context.SecureRandom, maxExtraPadBlocks);
padding_length += actualExtraPadBlocks * blockSize;
}
int totalSize = len + macSize + padding_length + 1;
if (useExplicitIV)
{
totalSize += blockSize;
}
byte[] outBuf = new byte[totalSize];
int outOff = 0;
if (useExplicitIV)
{
byte[] explicitIV = new byte[blockSize];
context.NonceRandomGenerator.NextBytes(explicitIV);
encryptCipher.Init(true, new ParametersWithIV(null, explicitIV));
Array.Copy(explicitIV, 0, outBuf, outOff, blockSize);
outOff += blockSize;
}
int blocks_start = outOff;
Array.Copy(plaintext, offset, outBuf, outOff, len);
outOff += len;
if (!encryptThenMac)
{
byte[] mac = mWriteMac.CalculateMac(seqNo, type, plaintext, offset, len);
Array.Copy(mac, 0, outBuf, outOff, mac.Length);
outOff += mac.Length;
}
for (int i = 0; i <= padding_length; i++)
{
outBuf[outOff++] = (byte)padding_length;
}
for (int i = blocks_start; i < outOff; i += blockSize)
{
encryptCipher.ProcessBlock(outBuf, i, outBuf, i);
}
if (encryptThenMac)
{
byte[] mac = mWriteMac.CalculateMac(seqNo, type, outBuf, 0, outOff);
Array.Copy(mac, 0, outBuf, outOff, mac.Length);
outOff += mac.Length;
}
// assert outBuf.length == outOff;
return outBuf;
}
///
public virtual byte[] DecodeCiphertext(long seqNo, byte type, byte[] ciphertext, int offset, int len)
{
int blockSize = decryptCipher.GetBlockSize();
int macSize = mReadMac.Size;
int minLen = blockSize;
if (encryptThenMac)
{
minLen += macSize;
}
else
{
minLen = System.Math.Max(minLen, macSize + 1);
}
if (useExplicitIV)
{
minLen += blockSize;
}
if (len < minLen)
throw new TlsFatalAlert(AlertDescription.decode_error);
int blocks_length = len;
if (encryptThenMac)
{
blocks_length -= macSize;
}
if (blocks_length % blockSize != 0)
throw new TlsFatalAlert(AlertDescription.decryption_failed);
if (encryptThenMac)
{
int end = offset + len;
byte[] receivedMac = Arrays.CopyOfRange(ciphertext, end - macSize, end);
byte[] calculatedMac = mReadMac.CalculateMac(seqNo, type, ciphertext, offset, len - macSize);
bool badMacEtm = !Arrays.ConstantTimeAreEqual(calculatedMac, receivedMac);
if (badMacEtm)
{
/*
* RFC 7366 3. The MAC SHALL be evaluated before any further processing such as
* decryption is performed, and if the MAC verification fails, then processing SHALL
* terminate immediately. For TLS, a fatal bad_record_mac MUST be generated [2]. For
* DTLS, the record MUST be discarded, and a fatal bad_record_mac MAY be generated
* [4]. This immediate response to a bad MAC eliminates any timing channels that may
* be available through the use of manipulated packet data.
*/
throw new TlsFatalAlert(AlertDescription.bad_record_mac);
}
}
if (useExplicitIV)
{
decryptCipher.Init(false, new ParametersWithIV(null, ciphertext, offset, blockSize));
offset += blockSize;
blocks_length -= blockSize;
}
for (int i = 0; i < blocks_length; i += blockSize)
{
decryptCipher.ProcessBlock(ciphertext, offset + i, ciphertext, offset + i);
}
// If there's anything wrong with the padding, this will return zero
int totalPad = CheckPaddingConstantTime(ciphertext, offset, blocks_length, blockSize, encryptThenMac ? 0 : macSize);
bool badMac = (totalPad == 0);
int dec_output_length = blocks_length - totalPad;
if (!encryptThenMac)
{
dec_output_length -= macSize;
int macInputLen = dec_output_length;
int macOff = offset + macInputLen;
byte[] receivedMac = Arrays.CopyOfRange(ciphertext, macOff, macOff + macSize);
byte[] calculatedMac = mReadMac.CalculateMacConstantTime(seqNo, type, ciphertext, offset, macInputLen,
blocks_length - macSize, randomData);
badMac |= !Arrays.ConstantTimeAreEqual(calculatedMac, receivedMac);
}
if (badMac)
throw new TlsFatalAlert(AlertDescription.bad_record_mac);
return Arrays.CopyOfRange(ciphertext, offset, offset + dec_output_length);
}
protected virtual int CheckPaddingConstantTime(byte[] buf, int off, int len, int blockSize, int macSize)
{
int end = off + len;
byte lastByte = buf[end - 1];
int padlen = lastByte & 0xff;
int totalPad = padlen + 1;
int dummyIndex = 0;
byte padDiff = 0;
if ((TlsUtilities.IsSsl(context) && totalPad > blockSize) || (macSize + totalPad > len))
{
totalPad = 0;
}
else
{
int padPos = end - totalPad;
do
{
padDiff |= (byte)(buf[padPos++] ^ lastByte);
}
while (padPos < end);
dummyIndex = totalPad;
if (padDiff != 0)
{
totalPad = 0;
}
}
// Run some extra dummy checks so the number of checks is always constant
{
byte[] dummyPad = randomData;
while (dummyIndex < 256)
{
padDiff |= (byte)(dummyPad[dummyIndex++] ^ lastByte);
}
// Ensure the above loop is not eliminated
dummyPad[0] ^= padDiff;
}
return totalPad;
}
protected virtual int ChooseExtraPadBlocks(SecureRandom r, int max)
{
// return r.NextInt(max + 1);
int x = r.NextInt();
int n = LowestBitSet(x);
return System.Math.Min(n, max);
}
protected virtual int LowestBitSet(int x)
{
if (x == 0)
return 32;
uint ux = (uint)x;
int n = 0;
while ((ux & 1U) == 0)
{
++n;
ux >>= 1;
}
return n;
}
}
}
#endif