#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using Org.BouncyCastle.Crypto.Parameters; namespace Org.BouncyCastle.Crypto.Modes { /** * implements a Cipher-FeedBack (CFB) mode on top of a simple cipher. */ public class CfbBlockCipher : IBlockCipher { private byte[] IV; private byte[] cfbV; private byte[] cfbOutV; private bool encrypting; private readonly int blockSize; private readonly IBlockCipher cipher; /** * Basic constructor. * * @param cipher the block cipher to be used as the basis of the * feedback mode. * @param blockSize the block size in bits (note: a multiple of 8) */ public CfbBlockCipher( IBlockCipher cipher, int bitBlockSize) { this.cipher = cipher; this.blockSize = bitBlockSize / 8; this.IV = new byte[cipher.GetBlockSize()]; this.cfbV = new byte[cipher.GetBlockSize()]; this.cfbOutV = new byte[cipher.GetBlockSize()]; } /** * return the underlying block cipher that we are wrapping. * * @return the underlying block cipher that we are wrapping. */ public IBlockCipher GetUnderlyingCipher() { return cipher; } /** * Initialise the cipher and, possibly, the initialisation vector (IV). * If an IV isn't passed as part of the parameter, the IV will be all zeros. * An IV which is too short is handled in FIPS compliant fashion. * * @param forEncryption if true the cipher is initialised for * encryption, if false for decryption. * @param param the key and other data required by the cipher. * @exception ArgumentException if the parameters argument is * inappropriate. */ public void Init( bool forEncryption, ICipherParameters parameters) { this.encrypting = forEncryption; if (parameters is ParametersWithIV) { ParametersWithIV ivParam = (ParametersWithIV) parameters; byte[] iv = ivParam.GetIV(); int diff = IV.Length - iv.Length; Array.Copy(iv, 0, IV, diff, iv.Length); Array.Clear(IV, 0, diff); parameters = ivParam.Parameters; } Reset(); // if it's null, key is to be reused. if (parameters != null) { cipher.Init(true, parameters); } } /** * return the algorithm name and mode. * * @return the name of the underlying algorithm followed by "/CFB" * and the block size in bits. */ public string AlgorithmName { get { return cipher.AlgorithmName + "/CFB" + (blockSize * 8); } } public bool IsPartialBlockOkay { get { return true; } } /** * return the block size we are operating at. * * @return the block size we are operating at (in bytes). */ public int GetBlockSize() { return blockSize; } /** * Process one block of input from the array in and write it to * the out array. * * @param in the array containing the input data. * @param inOff offset into the in array the data starts at. * @param out the array the output data will be copied into. * @param outOff the offset into the out array the output will start at. * @exception DataLengthException if there isn't enough data in in, or * space in out. * @exception InvalidOperationException if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int ProcessBlock( byte[] input, int inOff, byte[] output, int outOff) { return (encrypting) ? EncryptBlock(input, inOff, output, outOff) : DecryptBlock(input, inOff, output, outOff); } /** * Do the appropriate processing for CFB mode encryption. * * @param in the array containing the data to be encrypted. * @param inOff offset into the in array the data starts at. * @param out the array the encrypted data will be copied into. * @param outOff the offset into the out array the output will start at. * @exception DataLengthException if there isn't enough data in in, or * space in out. * @exception InvalidOperationException if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int EncryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { if ((inOff + blockSize) > input.Length) { throw new DataLengthException("input buffer too short"); } if ((outOff + blockSize) > outBytes.Length) { throw new DataLengthException("output buffer too short"); } cipher.ProcessBlock(cfbV, 0, cfbOutV, 0); // // XOR the cfbV with the plaintext producing the ciphertext // for (int i = 0; i < blockSize; i++) { outBytes[outOff + i] = (byte)(cfbOutV[i] ^ input[inOff + i]); } // // change over the input block. // Array.Copy(cfbV, blockSize, cfbV, 0, cfbV.Length - blockSize); Array.Copy(outBytes, outOff, cfbV, cfbV.Length - blockSize, blockSize); return blockSize; } /** * Do the appropriate processing for CFB mode decryption. * * @param in the array containing the data to be decrypted. * @param inOff offset into the in array the data starts at. * @param out the array the encrypted data will be copied into. * @param outOff the offset into the out array the output will start at. * @exception DataLengthException if there isn't enough data in in, or * space in out. * @exception InvalidOperationException if the cipher isn't initialised. * @return the number of bytes processed and produced. */ public int DecryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { if ((inOff + blockSize) > input.Length) { throw new DataLengthException("input buffer too short"); } if ((outOff + blockSize) > outBytes.Length) { throw new DataLengthException("output buffer too short"); } cipher.ProcessBlock(cfbV, 0, cfbOutV, 0); // // change over the input block. // Array.Copy(cfbV, blockSize, cfbV, 0, cfbV.Length - blockSize); Array.Copy(input, inOff, cfbV, cfbV.Length - blockSize, blockSize); // // XOR the cfbV with the ciphertext producing the plaintext // for (int i = 0; i < blockSize; i++) { outBytes[outOff + i] = (byte)(cfbOutV[i] ^ input[inOff + i]); } return blockSize; } /** * reset the chaining vector back to the IV and reset the underlying * cipher. */ public void Reset() { Array.Copy(IV, 0, cfbV, 0, IV.Length); cipher.Reset(); } } } #endif