#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
using System;
using System.Text;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Crypto.Utilities;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Crypto.Engines
{
///
/// Implementation of Daniel J. Bernstein's Salsa20 stream cipher, Snuffle 2005
///
public class Salsa20Engine
: IStreamCipher
{
public static readonly int DEFAULT_ROUNDS = 20;
/** Constants */
private const int StateSize = 16; // 16, 32 bit ints = 64 bytes
private readonly static uint[] TAU_SIGMA = Pack.LE_To_UInt32(Strings.ToAsciiByteArray("expand 16-byte k" + "expand 32-byte k"), 0, 8);
internal void PackTauOrSigma(int keyLength, uint[] state, int stateOffset)
{
int tsOff = (keyLength - 16) / 4;
state[stateOffset] = TAU_SIGMA[tsOff];
state[stateOffset + 1] = TAU_SIGMA[tsOff + 1];
state[stateOffset + 2] = TAU_SIGMA[tsOff + 2];
state[stateOffset + 3] = TAU_SIGMA[tsOff + 3];
}
[Obsolete]
protected readonly static byte[]
sigma = Strings.ToAsciiByteArray("expand 32-byte k"),
tau = Strings.ToAsciiByteArray("expand 16-byte k");
protected int rounds;
/*
* variables to hold the state of the engine
* during encryption and decryption
*/
private int index = 0;
internal uint[] engineState = new uint[StateSize]; // state
internal uint[] x = new uint[StateSize]; // internal buffer
private byte[] keyStream = new byte[StateSize * 4]; // expanded state, 64 bytes
private bool initialised = false;
/*
* internal counter
*/
private uint cW0, cW1, cW2;
///
/// Creates a 20 round Salsa20 engine.
///
public Salsa20Engine()
: this(DEFAULT_ROUNDS)
{
}
///
/// Creates a Salsa20 engine with a specific number of rounds.
///
/// the number of rounds (must be an even number).
public Salsa20Engine(int rounds)
{
if (rounds <= 0 || (rounds & 1) != 0)
{
throw new ArgumentException("'rounds' must be a positive, even number");
}
this.rounds = rounds;
}
public virtual void Init(
bool forEncryption,
ICipherParameters parameters)
{
/*
* Salsa20 encryption and decryption is completely
* symmetrical, so the 'forEncryption' is
* irrelevant. (Like 90% of stream ciphers)
*/
ParametersWithIV ivParams = parameters as ParametersWithIV;
if (ivParams == null)
throw new ArgumentException(AlgorithmName + " Init requires an IV", "parameters");
byte[] iv = ivParams.GetIV();
if (iv == null || iv.Length != NonceSize)
throw new ArgumentException(AlgorithmName + " requires exactly " + NonceSize + " bytes of IV");
ICipherParameters keyParam = ivParams.Parameters;
if (keyParam == null)
{
if (!initialised)
throw new InvalidOperationException(AlgorithmName + " KeyParameter can not be null for first initialisation");
SetKey(null, iv);
}
else if (keyParam is KeyParameter)
{
SetKey(((KeyParameter)keyParam).GetKey(), iv);
}
else
{
throw new ArgumentException(AlgorithmName + " Init parameters must contain a KeyParameter (or null for re-init)");
}
Reset();
initialised = true;
}
protected virtual int NonceSize
{
get { return 8; }
}
public virtual string AlgorithmName
{
get
{
string name = "Salsa20";
if (rounds != DEFAULT_ROUNDS)
{
name += "/" + rounds;
}
return name;
}
}
public virtual byte ReturnByte(
byte input)
{
if (LimitExceeded())
{
throw new MaxBytesExceededException("2^70 byte limit per IV; Change IV");
}
if (index == 0)
{
GenerateKeyStream(keyStream);
AdvanceCounter();
}
byte output = (byte)(keyStream[index] ^ input);
index = (index + 1) & 63;
return output;
}
protected virtual void AdvanceCounter()
{
if (++engineState[8] == 0)
{
++engineState[9];
}
}
public virtual void ProcessBytes(
byte[] inBytes,
int inOff,
int len,
byte[] outBytes,
int outOff)
{
if (!initialised)
throw new InvalidOperationException(AlgorithmName + " not initialised");
Check.DataLength(inBytes, inOff, len, "input buffer too short");
Check.OutputLength(outBytes, outOff, len, "output buffer too short");
if (LimitExceeded((uint)len))
throw new MaxBytesExceededException("2^70 byte limit per IV would be exceeded; Change IV");
for (int i = 0; i < len; i++)
{
if (index == 0)
{
GenerateKeyStream(keyStream);
AdvanceCounter();
}
outBytes[i+outOff] = (byte)(keyStream[index]^inBytes[i+inOff]);
index = (index + 1) & 63;
}
}
public virtual void Reset()
{
index = 0;
ResetLimitCounter();
ResetCounter();
}
protected virtual void ResetCounter()
{
engineState[8] = engineState[9] = 0;
}
protected virtual void SetKey(byte[] keyBytes, byte[] ivBytes)
{
if (keyBytes != null)
{
if ((keyBytes.Length != 16) && (keyBytes.Length != 32))
throw new ArgumentException(AlgorithmName + " requires 128 bit or 256 bit key");
int tsOff = (keyBytes.Length - 16) / 4;
engineState[0] = TAU_SIGMA[tsOff];
engineState[5] = TAU_SIGMA[tsOff + 1];
engineState[10] = TAU_SIGMA[tsOff + 2];
engineState[15] = TAU_SIGMA[tsOff + 3];
// Key
Pack.LE_To_UInt32(keyBytes, 0, engineState, 1, 4);
Pack.LE_To_UInt32(keyBytes, keyBytes.Length - 16, engineState, 11, 4);
}
// IV
Pack.LE_To_UInt32(ivBytes, 0, engineState, 6, 2);
}
protected virtual void GenerateKeyStream(byte[] output)
{
SalsaCore(rounds, engineState, x);
Pack.UInt32_To_LE(x, output, 0);
}
internal static void SalsaCore(int rounds, uint[] input, uint[] x)
{
if (input.Length != 16)
throw new ArgumentException();
if (x.Length != 16)
throw new ArgumentException();
if (rounds % 2 != 0)
throw new ArgumentException("Number of rounds must be even");
uint x00 = input[ 0];
uint x01 = input[ 1];
uint x02 = input[ 2];
uint x03 = input[ 3];
uint x04 = input[ 4];
uint x05 = input[ 5];
uint x06 = input[ 6];
uint x07 = input[ 7];
uint x08 = input[ 8];
uint x09 = input[ 9];
uint x10 = input[10];
uint x11 = input[11];
uint x12 = input[12];
uint x13 = input[13];
uint x14 = input[14];
uint x15 = input[15];
for (int i = rounds; i > 0; i -= 2)
{
x04 ^= R((x00+x12), 7);
x08 ^= R((x04+x00), 9);
x12 ^= R((x08+x04),13);
x00 ^= R((x12+x08),18);
x09 ^= R((x05+x01), 7);
x13 ^= R((x09+x05), 9);
x01 ^= R((x13+x09),13);
x05 ^= R((x01+x13),18);
x14 ^= R((x10+x06), 7);
x02 ^= R((x14+x10), 9);
x06 ^= R((x02+x14),13);
x10 ^= R((x06+x02),18);
x03 ^= R((x15+x11), 7);
x07 ^= R((x03+x15), 9);
x11 ^= R((x07+x03),13);
x15 ^= R((x11+x07),18);
x01 ^= R((x00+x03), 7);
x02 ^= R((x01+x00), 9);
x03 ^= R((x02+x01),13);
x00 ^= R((x03+x02),18);
x06 ^= R((x05+x04), 7);
x07 ^= R((x06+x05), 9);
x04 ^= R((x07+x06),13);
x05 ^= R((x04+x07),18);
x11 ^= R((x10+x09), 7);
x08 ^= R((x11+x10), 9);
x09 ^= R((x08+x11),13);
x10 ^= R((x09+x08),18);
x12 ^= R((x15+x14), 7);
x13 ^= R((x12+x15), 9);
x14 ^= R((x13+x12),13);
x15 ^= R((x14+x13),18);
}
x[ 0] = x00 + input[ 0];
x[ 1] = x01 + input[ 1];
x[ 2] = x02 + input[ 2];
x[ 3] = x03 + input[ 3];
x[ 4] = x04 + input[ 4];
x[ 5] = x05 + input[ 5];
x[ 6] = x06 + input[ 6];
x[ 7] = x07 + input[ 7];
x[ 8] = x08 + input[ 8];
x[ 9] = x09 + input[ 9];
x[10] = x10 + input[10];
x[11] = x11 + input[11];
x[12] = x12 + input[12];
x[13] = x13 + input[13];
x[14] = x14 + input[14];
x[15] = x15 + input[15];
}
/**
* Rotate left
*
* @param x value to rotate
* @param y amount to rotate x
*
* @return rotated x
*/
internal static uint R(uint x, int y)
{
return (x << y) | (x >> (32 - y));
}
private void ResetLimitCounter()
{
cW0 = 0;
cW1 = 0;
cW2 = 0;
}
private bool LimitExceeded()
{
if (++cW0 == 0)
{
if (++cW1 == 0)
{
return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6)
}
}
return false;
}
/*
* this relies on the fact len will always be positive.
*/
private bool LimitExceeded(
uint len)
{
uint old = cW0;
cW0 += len;
if (cW0 < old)
{
if (++cW1 == 0)
{
return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6)
}
}
return false;
}
}
}
#endif