#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using System.Text; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Crypto.Utilities; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Crypto.Engines { /// /// Implementation of Daniel J. Bernstein's Salsa20 stream cipher, Snuffle 2005 /// public class Salsa20Engine : IStreamCipher { public static readonly int DEFAULT_ROUNDS = 20; /** Constants */ private const int StateSize = 16; // 16, 32 bit ints = 64 bytes private readonly static uint[] TAU_SIGMA = Pack.LE_To_UInt32(Strings.ToAsciiByteArray("expand 16-byte k" + "expand 32-byte k"), 0, 8); internal void PackTauOrSigma(int keyLength, uint[] state, int stateOffset) { int tsOff = (keyLength - 16) / 4; state[stateOffset] = TAU_SIGMA[tsOff]; state[stateOffset + 1] = TAU_SIGMA[tsOff + 1]; state[stateOffset + 2] = TAU_SIGMA[tsOff + 2]; state[stateOffset + 3] = TAU_SIGMA[tsOff + 3]; } [Obsolete] protected readonly static byte[] sigma = Strings.ToAsciiByteArray("expand 32-byte k"), tau = Strings.ToAsciiByteArray("expand 16-byte k"); protected int rounds; /* * variables to hold the state of the engine * during encryption and decryption */ private int index = 0; internal uint[] engineState = new uint[StateSize]; // state internal uint[] x = new uint[StateSize]; // internal buffer private byte[] keyStream = new byte[StateSize * 4]; // expanded state, 64 bytes private bool initialised = false; /* * internal counter */ private uint cW0, cW1, cW2; /// /// Creates a 20 round Salsa20 engine. /// public Salsa20Engine() : this(DEFAULT_ROUNDS) { } /// /// Creates a Salsa20 engine with a specific number of rounds. /// /// the number of rounds (must be an even number). public Salsa20Engine(int rounds) { if (rounds <= 0 || (rounds & 1) != 0) { throw new ArgumentException("'rounds' must be a positive, even number"); } this.rounds = rounds; } public virtual void Init( bool forEncryption, ICipherParameters parameters) { /* * Salsa20 encryption and decryption is completely * symmetrical, so the 'forEncryption' is * irrelevant. (Like 90% of stream ciphers) */ ParametersWithIV ivParams = parameters as ParametersWithIV; if (ivParams == null) throw new ArgumentException(AlgorithmName + " Init requires an IV", "parameters"); byte[] iv = ivParams.GetIV(); if (iv == null || iv.Length != NonceSize) throw new ArgumentException(AlgorithmName + " requires exactly " + NonceSize + " bytes of IV"); ICipherParameters keyParam = ivParams.Parameters; if (keyParam == null) { if (!initialised) throw new InvalidOperationException(AlgorithmName + " KeyParameter can not be null for first initialisation"); SetKey(null, iv); } else if (keyParam is KeyParameter) { SetKey(((KeyParameter)keyParam).GetKey(), iv); } else { throw new ArgumentException(AlgorithmName + " Init parameters must contain a KeyParameter (or null for re-init)"); } Reset(); initialised = true; } protected virtual int NonceSize { get { return 8; } } public virtual string AlgorithmName { get { string name = "Salsa20"; if (rounds != DEFAULT_ROUNDS) { name += "/" + rounds; } return name; } } public virtual byte ReturnByte( byte input) { if (LimitExceeded()) { throw new MaxBytesExceededException("2^70 byte limit per IV; Change IV"); } if (index == 0) { GenerateKeyStream(keyStream); AdvanceCounter(); } byte output = (byte)(keyStream[index] ^ input); index = (index + 1) & 63; return output; } protected virtual void AdvanceCounter() { if (++engineState[8] == 0) { ++engineState[9]; } } public virtual void ProcessBytes( byte[] inBytes, int inOff, int len, byte[] outBytes, int outOff) { if (!initialised) throw new InvalidOperationException(AlgorithmName + " not initialised"); Check.DataLength(inBytes, inOff, len, "input buffer too short"); Check.OutputLength(outBytes, outOff, len, "output buffer too short"); if (LimitExceeded((uint)len)) throw new MaxBytesExceededException("2^70 byte limit per IV would be exceeded; Change IV"); for (int i = 0; i < len; i++) { if (index == 0) { GenerateKeyStream(keyStream); AdvanceCounter(); } outBytes[i+outOff] = (byte)(keyStream[index]^inBytes[i+inOff]); index = (index + 1) & 63; } } public virtual void Reset() { index = 0; ResetLimitCounter(); ResetCounter(); } protected virtual void ResetCounter() { engineState[8] = engineState[9] = 0; } protected virtual void SetKey(byte[] keyBytes, byte[] ivBytes) { if (keyBytes != null) { if ((keyBytes.Length != 16) && (keyBytes.Length != 32)) throw new ArgumentException(AlgorithmName + " requires 128 bit or 256 bit key"); int tsOff = (keyBytes.Length - 16) / 4; engineState[0] = TAU_SIGMA[tsOff]; engineState[5] = TAU_SIGMA[tsOff + 1]; engineState[10] = TAU_SIGMA[tsOff + 2]; engineState[15] = TAU_SIGMA[tsOff + 3]; // Key Pack.LE_To_UInt32(keyBytes, 0, engineState, 1, 4); Pack.LE_To_UInt32(keyBytes, keyBytes.Length - 16, engineState, 11, 4); } // IV Pack.LE_To_UInt32(ivBytes, 0, engineState, 6, 2); } protected virtual void GenerateKeyStream(byte[] output) { SalsaCore(rounds, engineState, x); Pack.UInt32_To_LE(x, output, 0); } internal static void SalsaCore(int rounds, uint[] input, uint[] x) { if (input.Length != 16) throw new ArgumentException(); if (x.Length != 16) throw new ArgumentException(); if (rounds % 2 != 0) throw new ArgumentException("Number of rounds must be even"); uint x00 = input[ 0]; uint x01 = input[ 1]; uint x02 = input[ 2]; uint x03 = input[ 3]; uint x04 = input[ 4]; uint x05 = input[ 5]; uint x06 = input[ 6]; uint x07 = input[ 7]; uint x08 = input[ 8]; uint x09 = input[ 9]; uint x10 = input[10]; uint x11 = input[11]; uint x12 = input[12]; uint x13 = input[13]; uint x14 = input[14]; uint x15 = input[15]; for (int i = rounds; i > 0; i -= 2) { x04 ^= R((x00+x12), 7); x08 ^= R((x04+x00), 9); x12 ^= R((x08+x04),13); x00 ^= R((x12+x08),18); x09 ^= R((x05+x01), 7); x13 ^= R((x09+x05), 9); x01 ^= R((x13+x09),13); x05 ^= R((x01+x13),18); x14 ^= R((x10+x06), 7); x02 ^= R((x14+x10), 9); x06 ^= R((x02+x14),13); x10 ^= R((x06+x02),18); x03 ^= R((x15+x11), 7); x07 ^= R((x03+x15), 9); x11 ^= R((x07+x03),13); x15 ^= R((x11+x07),18); x01 ^= R((x00+x03), 7); x02 ^= R((x01+x00), 9); x03 ^= R((x02+x01),13); x00 ^= R((x03+x02),18); x06 ^= R((x05+x04), 7); x07 ^= R((x06+x05), 9); x04 ^= R((x07+x06),13); x05 ^= R((x04+x07),18); x11 ^= R((x10+x09), 7); x08 ^= R((x11+x10), 9); x09 ^= R((x08+x11),13); x10 ^= R((x09+x08),18); x12 ^= R((x15+x14), 7); x13 ^= R((x12+x15), 9); x14 ^= R((x13+x12),13); x15 ^= R((x14+x13),18); } x[ 0] = x00 + input[ 0]; x[ 1] = x01 + input[ 1]; x[ 2] = x02 + input[ 2]; x[ 3] = x03 + input[ 3]; x[ 4] = x04 + input[ 4]; x[ 5] = x05 + input[ 5]; x[ 6] = x06 + input[ 6]; x[ 7] = x07 + input[ 7]; x[ 8] = x08 + input[ 8]; x[ 9] = x09 + input[ 9]; x[10] = x10 + input[10]; x[11] = x11 + input[11]; x[12] = x12 + input[12]; x[13] = x13 + input[13]; x[14] = x14 + input[14]; x[15] = x15 + input[15]; } /** * Rotate left * * @param x value to rotate * @param y amount to rotate x * * @return rotated x */ internal static uint R(uint x, int y) { return (x << y) | (x >> (32 - y)); } private void ResetLimitCounter() { cW0 = 0; cW1 = 0; cW2 = 0; } private bool LimitExceeded() { if (++cW0 == 0) { if (++cW1 == 0) { return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6) } } return false; } /* * this relies on the fact len will always be positive. */ private bool LimitExceeded( uint len) { uint old = cW0; cW0 += len; if (cW0 < old) { if (++cW1 == 0) { return (++cW2 & 0x20) != 0; // 2^(32 + 32 + 6) } } return false; } } } #endif