#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Crypto.Engines { /** * An RC6 engine. */ public class RC6Engine : IBlockCipher { private static readonly int wordSize = 32; private static readonly int bytesPerWord = wordSize / 8; /* * the number of rounds to perform */ private static readonly int _noRounds = 20; /* * the expanded key array of size 2*(rounds + 1) */ private int [] _S; /* * our "magic constants" for wordSize 32 * * Pw = Odd((e-2) * 2^wordsize) * Qw = Odd((o-2) * 2^wordsize) * * where e is the base of natural logarithms (2.718281828...) * and o is the golden ratio (1.61803398...) */ private static readonly int P32 = unchecked((int) 0xb7e15163); private static readonly int Q32 = unchecked((int) 0x9e3779b9); private static readonly int LGW = 5; // log2(32) private bool forEncryption; /** * Create an instance of the RC6 encryption algorithm * and set some defaults */ public RC6Engine() { // _S = null; } public virtual string AlgorithmName { get { return "RC6"; } } public virtual bool IsPartialBlockOkay { get { return false; } } public virtual int GetBlockSize() { return 4 * bytesPerWord; } /** * initialise a RC5-32 cipher. * * @param forEncryption whether or not we are for encryption. * @param parameters the parameters required to set up the cipher. * @exception ArgumentException if the parameters argument is * inappropriate. */ public virtual void Init( bool forEncryption, ICipherParameters parameters) { if (!(parameters is KeyParameter)) throw new ArgumentException("invalid parameter passed to RC6 init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters)); this.forEncryption = forEncryption; KeyParameter p = (KeyParameter)parameters; SetKey(p.GetKey()); } public virtual int ProcessBlock( byte[] input, int inOff, byte[] output, int outOff) { int blockSize = GetBlockSize(); if (_S == null) throw new InvalidOperationException("RC6 engine not initialised"); Check.DataLength(input, inOff, blockSize, "input buffer too short"); Check.OutputLength(output, outOff, blockSize, "output buffer too short"); return (forEncryption) ? EncryptBlock(input, inOff, output, outOff) : DecryptBlock(input, inOff, output, outOff); } public virtual void Reset() { } /** * Re-key the cipher. * * @param inKey the key to be used */ private void SetKey( byte[] key) { // // KEY EXPANSION: // // There are 3 phases to the key expansion. // // Phase 1: // Copy the secret key K[0...b-1] into an array L[0..c-1] of // c = ceil(b/u), where u = wordSize/8 in little-endian order. // In other words, we fill up L using u consecutive key bytes // of K. Any unfilled byte positions in L are zeroed. In the // case that b = c = 0, set c = 1 and L[0] = 0. // // compute number of dwords int c = (key.Length + (bytesPerWord - 1)) / bytesPerWord; if (c == 0) { c = 1; } int[] L = new int[(key.Length + bytesPerWord - 1) / bytesPerWord]; // load all key bytes into array of key dwords for (int i = key.Length - 1; i >= 0; i--) { L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff); } // // Phase 2: // Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords. // Initialize S to a particular fixed pseudo-random bit pattern // using an arithmetic progression modulo 2^wordsize determined // by the magic numbers, Pw & Qw. // _S = new int[2+2*_noRounds+2]; _S[0] = P32; for (int i=1; i < _S.Length; i++) { _S[i] = (_S[i-1] + Q32); } // // Phase 3: // Mix in the user's secret key in 3 passes over the arrays S & L. // The max of the arrays sizes is used as the loop control // int iter; if (L.Length > _S.Length) { iter = 3 * L.Length; } else { iter = 3 * _S.Length; } int A = 0; int B = 0; int ii = 0, jj = 0; for (int k = 0; k < iter; k++) { A = _S[ii] = RotateLeft(_S[ii] + A + B, 3); B = L[jj] = RotateLeft( L[jj] + A + B, A+B); ii = (ii+1) % _S.Length; jj = (jj+1) % L.Length; } } private int EncryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { // load A,B,C and D registers from in. int A = BytesToWord(input, inOff); int B = BytesToWord(input, inOff + bytesPerWord); int C = BytesToWord(input, inOff + bytesPerWord*2); int D = BytesToWord(input, inOff + bytesPerWord*3); // Do pseudo-round #0: pre-whitening of B and D B += _S[0]; D += _S[1]; // perform round #1,#2 ... #ROUNDS of encryption for (int i = 1; i <= _noRounds; i++) { int t = 0,u = 0; t = B*(2*B+1); t = RotateLeft(t,5); u = D*(2*D+1); u = RotateLeft(u,5); A ^= t; A = RotateLeft(A,u); A += _S[2*i]; C ^= u; C = RotateLeft(C,t); C += _S[2*i+1]; int temp = A; A = B; B = C; C = D; D = temp; } // do pseudo-round #(ROUNDS+1) : post-whitening of A and C A += _S[2*_noRounds+2]; C += _S[2*_noRounds+3]; // store A, B, C and D registers to out WordToBytes(A, outBytes, outOff); WordToBytes(B, outBytes, outOff + bytesPerWord); WordToBytes(C, outBytes, outOff + bytesPerWord*2); WordToBytes(D, outBytes, outOff + bytesPerWord*3); return 4 * bytesPerWord; } private int DecryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { // load A,B,C and D registers from out. int A = BytesToWord(input, inOff); int B = BytesToWord(input, inOff + bytesPerWord); int C = BytesToWord(input, inOff + bytesPerWord*2); int D = BytesToWord(input, inOff + bytesPerWord*3); // Undo pseudo-round #(ROUNDS+1) : post whitening of A and C C -= _S[2*_noRounds+3]; A -= _S[2*_noRounds+2]; // Undo round #ROUNDS, .., #2,#1 of encryption for (int i = _noRounds; i >= 1; i--) { int t=0,u = 0; int temp = D; D = C; C = B; B = A; A = temp; t = B*(2*B+1); t = RotateLeft(t, LGW); u = D*(2*D+1); u = RotateLeft(u, LGW); C -= _S[2*i+1]; C = RotateRight(C,t); C ^= u; A -= _S[2*i]; A = RotateRight(A,u); A ^= t; } // Undo pseudo-round #0: pre-whitening of B and D D -= _S[1]; B -= _S[0]; WordToBytes(A, outBytes, outOff); WordToBytes(B, outBytes, outOff + bytesPerWord); WordToBytes(C, outBytes, outOff + bytesPerWord*2); WordToBytes(D, outBytes, outOff + bytesPerWord*3); return 4 * bytesPerWord; } ////////////////////////////////////////////////////////////// // // PRIVATE Helper Methods // ////////////////////////////////////////////////////////////// /** * Perform a left "spin" of the word. The rotation of the given * word x is rotated left by y bits. * Only the lg(wordSize) low-order bits of y * are used to determine the rotation amount. Here it is * assumed that the wordsize used is a power of 2. * * @param x word to rotate * @param y number of bits to rotate % wordSize */ private int RotateLeft(int x, int y) { return ((int)((uint)(x << (y & (wordSize-1))) | ((uint) x >> (wordSize - (y & (wordSize-1)))))); } /** * Perform a right "spin" of the word. The rotation of the given * word x is rotated left by y bits. * Only the lg(wordSize) low-order bits of y * are used to determine the rotation amount. Here it is * assumed that the wordsize used is a power of 2. * * @param x word to rotate * @param y number of bits to rotate % wordSize */ private int RotateRight(int x, int y) { return ((int)(((uint) x >> (y & (wordSize-1))) | (uint)(x << (wordSize - (y & (wordSize-1)))))); } private int BytesToWord( byte[] src, int srcOff) { int word = 0; for (int i = bytesPerWord - 1; i >= 0; i--) { word = (word << 8) + (src[i + srcOff] & 0xff); } return word; } private void WordToBytes( int word, byte[] dst, int dstOff) { for (int i = 0; i < bytesPerWord; i++) { dst[i + dstOff] = (byte)word; word = (int) ((uint) word >> 8); } } } } #endif