#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Utilities; #if UNITY_WSA && !UNITY_EDITOR && !ENABLE_IL2CPP using System.TypeFix; #endif namespace Org.BouncyCastle.Crypto.Engines { /** * The specification for RC5 came from the RC5 Encryption Algorithm * publication in RSA CryptoBytes, Spring of 1995. * http://www.rsasecurity.com/rsalabs/cryptobytes. *

* This implementation is set to work with a 64 bit word size.

*/ public class RC564Engine : IBlockCipher { private static readonly int wordSize = 64; private static readonly int bytesPerWord = wordSize / 8; /* * the number of rounds to perform */ private int _noRounds; /* * the expanded key array of size 2*(rounds + 1) */ private long [] _S; /* * our "magic constants" for wordSize 62 * * Pw = Odd((e-2) * 2^wordsize) * Qw = Odd((o-2) * 2^wordsize) * * where e is the base of natural logarithms (2.718281828...) * and o is the golden ratio (1.61803398...) */ private static readonly long P64 = unchecked( (long) 0xb7e151628aed2a6bL); private static readonly long Q64 = unchecked( (long) 0x9e3779b97f4a7c15L); private bool forEncryption; /** * Create an instance of the RC5 encryption algorithm * and set some defaults */ public RC564Engine() { _noRounds = 12; // _S = null; } public virtual string AlgorithmName { get { return "RC5-64"; } } public virtual bool IsPartialBlockOkay { get { return false; } } public virtual int GetBlockSize() { return 2 * bytesPerWord; } /** * initialise a RC5-64 cipher. * * @param forEncryption whether or not we are for encryption. * @param parameters the parameters required to set up the cipher. * @exception ArgumentException if the parameters argument is * inappropriate. */ public virtual void Init( bool forEncryption, ICipherParameters parameters) { if (!(typeof(RC5Parameters).IsInstanceOfType(parameters))) { throw new ArgumentException("invalid parameter passed to RC564 init - " + Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters)); } RC5Parameters p = (RC5Parameters)parameters; this.forEncryption = forEncryption; _noRounds = p.Rounds; SetKey(p.GetKey()); } public virtual int ProcessBlock( byte[] input, int inOff, byte[] output, int outOff) { return (forEncryption) ? EncryptBlock(input, inOff, output, outOff) : DecryptBlock(input, inOff, output, outOff); } public virtual void Reset() { } /** * Re-key the cipher. * * @param key the key to be used */ private void SetKey( byte[] key) { // // KEY EXPANSION: // // There are 3 phases to the key expansion. // // Phase 1: // Copy the secret key K[0...b-1] into an array L[0..c-1] of // c = ceil(b/u), where u = wordSize/8 in little-endian order. // In other words, we fill up L using u consecutive key bytes // of K. Any unfilled byte positions in L are zeroed. In the // case that b = c = 0, set c = 1 and L[0] = 0. // long[] L = new long[(key.Length + (bytesPerWord - 1)) / bytesPerWord]; for (int i = 0; i != key.Length; i++) { L[i / bytesPerWord] += (long)(key[i] & 0xff) << (8 * (i % bytesPerWord)); } // // Phase 2: // Initialize S to a particular fixed pseudo-random bit pattern // using an arithmetic progression modulo 2^wordsize determined // by the magic numbers, Pw & Qw. // _S = new long[2*(_noRounds + 1)]; _S[0] = P64; for (int i=1; i < _S.Length; i++) { _S[i] = (_S[i-1] + Q64); } // // Phase 3: // Mix in the user's secret key in 3 passes over the arrays S & L. // The max of the arrays sizes is used as the loop control // int iter; if (L.Length > _S.Length) { iter = 3 * L.Length; } else { iter = 3 * _S.Length; } long A = 0, B = 0; int ii = 0, jj = 0; for (int k = 0; k < iter; k++) { A = _S[ii] = RotateLeft(_S[ii] + A + B, 3); B = L[jj] = RotateLeft( L[jj] + A + B, A+B); ii = (ii+1) % _S.Length; jj = (jj+1) % L.Length; } } /** * Encrypt the given block starting at the given offset and place * the result in the provided buffer starting at the given offset. * * @param in in byte buffer containing data to encrypt * @param inOff offset into src buffer * @param out out buffer where encrypted data is written * @param outOff offset into out buffer */ private int EncryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { long A = BytesToWord(input, inOff) + _S[0]; long B = BytesToWord(input, inOff + bytesPerWord) + _S[1]; for (int i = 1; i <= _noRounds; i++) { A = RotateLeft(A ^ B, B) + _S[2*i]; B = RotateLeft(B ^ A, A) + _S[2*i+1]; } WordToBytes(A, outBytes, outOff); WordToBytes(B, outBytes, outOff + bytesPerWord); return 2 * bytesPerWord; } private int DecryptBlock( byte[] input, int inOff, byte[] outBytes, int outOff) { long A = BytesToWord(input, inOff); long B = BytesToWord(input, inOff + bytesPerWord); for (int i = _noRounds; i >= 1; i--) { B = RotateRight(B - _S[2*i+1], A) ^ A; A = RotateRight(A - _S[2*i], B) ^ B; } WordToBytes(A - _S[0], outBytes, outOff); WordToBytes(B - _S[1], outBytes, outOff + bytesPerWord); return 2 * bytesPerWord; } ////////////////////////////////////////////////////////////// // // PRIVATE Helper Methods // ////////////////////////////////////////////////////////////// /** * Perform a left "spin" of the word. The rotation of the given * word x is rotated left by y bits. * Only the lg(wordSize) low-order bits of y * are used to determine the rotation amount. Here it is * assumed that the wordsize used is a power of 2. * * @param x word to rotate * @param y number of bits to rotate % wordSize */ private long RotateLeft(long x, long y) { return ((long) ( (ulong) (x << (int) (y & (wordSize-1))) | ((ulong) x >> (int) (wordSize - (y & (wordSize-1))))) ); } /** * Perform a right "spin" of the word. The rotation of the given * word x is rotated left by y bits. * Only the lg(wordSize) low-order bits of y * are used to determine the rotation amount. Here it is * assumed that the wordsize used is a power of 2. * * @param x word to rotate * @param y number of bits to rotate % wordSize */ private long RotateRight(long x, long y) { return ((long) ( ((ulong) x >> (int) (y & (wordSize-1))) | (ulong) (x << (int) (wordSize - (y & (wordSize-1))))) ); } private long BytesToWord( byte[] src, int srcOff) { long word = 0; for (int i = bytesPerWord - 1; i >= 0; i--) { word = (word << 8) + (src[i + srcOff] & 0xff); } return word; } private void WordToBytes( long word, byte[] dst, int dstOff) { for (int i = 0; i < bytesPerWord; i++) { dst[i + dstOff] = (byte)word; word = (long) ((ulong) word >> 8); } } } } #endif