#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) using System; using Org.BouncyCastle.Crypto.Utilities; using Org.BouncyCastle.Utilities; namespace Org.BouncyCastle.Crypto.Digests { /** * Draft FIPS 180-2 implementation of SHA-256. Note: As this is * based on a draft this implementation is subject to change. * *
* block word digest * SHA-1 512 32 160 * SHA-256 512 32 256 * SHA-384 1024 64 384 * SHA-512 1024 64 512 **/ public class Sha256Digest : GeneralDigest { private const int DigestLength = 32; private uint H1, H2, H3, H4, H5, H6, H7, H8; private uint[] X = new uint[64]; private int xOff; public Sha256Digest() { initHs(); } /** * Copy constructor. This will copy the state of the provided * message digest. */ public Sha256Digest(Sha256Digest t) : base(t) { CopyIn(t); } private void CopyIn(Sha256Digest t) { base.CopyIn(t); H1 = t.H1; H2 = t.H2; H3 = t.H3; H4 = t.H4; H5 = t.H5; H6 = t.H6; H7 = t.H7; H8 = t.H8; Array.Copy(t.X, 0, X, 0, t.X.Length); xOff = t.xOff; } public override string AlgorithmName { get { return "SHA-256"; } } public override int GetDigestSize() { return DigestLength; } internal override void ProcessWord( byte[] input, int inOff) { X[xOff] = Pack.BE_To_UInt32(input, inOff); if (++xOff == 16) { ProcessBlock(); } } internal override void ProcessLength( long bitLength) { if (xOff > 14) { ProcessBlock(); } X[14] = (uint)((ulong)bitLength >> 32); X[15] = (uint)((ulong)bitLength); } public override int DoFinal( byte[] output, int outOff) { Finish(); Pack.UInt32_To_BE((uint)H1, output, outOff); Pack.UInt32_To_BE((uint)H2, output, outOff + 4); Pack.UInt32_To_BE((uint)H3, output, outOff + 8); Pack.UInt32_To_BE((uint)H4, output, outOff + 12); Pack.UInt32_To_BE((uint)H5, output, outOff + 16); Pack.UInt32_To_BE((uint)H6, output, outOff + 20); Pack.UInt32_To_BE((uint)H7, output, outOff + 24); Pack.UInt32_To_BE((uint)H8, output, outOff + 28); Reset(); return DigestLength; } /** * reset the chaining variables */ public override void Reset() { base.Reset(); initHs(); xOff = 0; Array.Clear(X, 0, X.Length); } private void initHs() { /* SHA-256 initial hash value * The first 32 bits of the fractional parts of the square roots * of the first eight prime numbers */ H1 = 0x6a09e667; H2 = 0xbb67ae85; H3 = 0x3c6ef372; H4 = 0xa54ff53a; H5 = 0x510e527f; H6 = 0x9b05688c; H7 = 0x1f83d9ab; H8 = 0x5be0cd19; } internal override void ProcessBlock() { // // expand 16 word block into 64 word blocks. // for (int ti = 16; ti <= 63; ti++) { X[ti] = Theta1(X[ti - 2]) + X[ti - 7] + Theta0(X[ti - 15]) + X[ti - 16]; } // // set up working variables. // uint a = H1; uint b = H2; uint c = H3; uint d = H4; uint e = H5; uint f = H6; uint g = H7; uint h = H8; int t = 0; for(int i = 0; i < 8; ++i) { // t = 8 * i h += Sum1Ch(e, f, g) + K[t] + X[t]; d += h; h += Sum0Maj(a, b, c); ++t; // t = 8 * i + 1 g += Sum1Ch(d, e, f) + K[t] + X[t]; c += g; g += Sum0Maj(h, a, b); ++t; // t = 8 * i + 2 f += Sum1Ch(c, d, e) + K[t] + X[t]; b += f; f += Sum0Maj(g, h, a); ++t; // t = 8 * i + 3 e += Sum1Ch(b, c, d) + K[t] + X[t]; a += e; e += Sum0Maj(f, g, h); ++t; // t = 8 * i + 4 d += Sum1Ch(a, b, c) + K[t] + X[t]; h += d; d += Sum0Maj(e, f, g); ++t; // t = 8 * i + 5 c += Sum1Ch(h, a, b) + K[t] + X[t]; g += c; c += Sum0Maj(d, e, f); ++t; // t = 8 * i + 6 b += Sum1Ch(g, h, a) + K[t] + X[t]; f += b; b += Sum0Maj(c, d, e); ++t; // t = 8 * i + 7 a += Sum1Ch(f, g, h) + K[t] + X[t]; e += a; a += Sum0Maj(b, c, d); ++t; } H1 += a; H2 += b; H3 += c; H4 += d; H5 += e; H6 += f; H7 += g; H8 += h; // // reset the offset and clean out the word buffer. // xOff = 0; Array.Clear(X, 0, 16); } private static uint Sum1Ch( uint x, uint y, uint z) { // return Sum1(x) + Ch(x, y, z); return (((x >> 6) | (x << 26)) ^ ((x >> 11) | (x << 21)) ^ ((x >> 25) | (x << 7))) + ((x & y) ^ ((~x) & z)); } private static uint Sum0Maj( uint x, uint y, uint z) { // return Sum0(x) + Maj(x, y, z); return (((x >> 2) | (x << 30)) ^ ((x >> 13) | (x << 19)) ^ ((x >> 22) | (x << 10))) + ((x & y) ^ (x & z) ^ (y & z)); } // /* SHA-256 functions */ // private static uint Ch( // uint x, // uint y, // uint z) // { // return ((x & y) ^ ((~x) & z)); // } // // private static uint Maj( // uint x, // uint y, // uint z) // { // return ((x & y) ^ (x & z) ^ (y & z)); // } // // private static uint Sum0( // uint x) // { // return ((x >> 2) | (x << 30)) ^ ((x >> 13) | (x << 19)) ^ ((x >> 22) | (x << 10)); // } // // private static uint Sum1( // uint x) // { // return ((x >> 6) | (x << 26)) ^ ((x >> 11) | (x << 21)) ^ ((x >> 25) | (x << 7)); // } private static uint Theta0( uint x) { return ((x >> 7) | (x << 25)) ^ ((x >> 18) | (x << 14)) ^ (x >> 3); } private static uint Theta1( uint x) { return ((x >> 17) | (x << 15)) ^ ((x >> 19) | (x << 13)) ^ (x >> 10); } /* SHA-256 Constants * (represent the first 32 bits of the fractional parts of the * cube roots of the first sixty-four prime numbers) */ private static readonly uint[] K = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; public override IMemoable Copy() { return new Sha256Digest(this); } public override void Reset(IMemoable other) { Sha256Digest d = (Sha256Digest)other; CopyIn(d); } } } #endif