// CRC32.cs // ------------------------------------------------------------------ // // Copyright (c) 2011 Dino Chiesa. // All rights reserved. // // This code module is part of DotNetZip, a zipfile class library. // // ------------------------------------------------------------------ // // This code is licensed under the Microsoft Public License. // See the file License.txt for the license details. // More info on: http://dotnetzip.codeplex.com // // ------------------------------------------------------------------ // // Last Saved: <2011-August-02 18:25:54> // // ------------------------------------------------------------------ // // This module defines the CRC32 class, which can do the CRC32 algorithm, using // arbitrary starting polynomials, and bit reversal. The bit reversal is what // distinguishes this CRC-32 used in BZip2 from the CRC-32 that is used in PKZIP // files, or GZIP files. This class does both. // // ------------------------------------------------------------------ using System; using Interop = System.Runtime.InteropServices; namespace BestHTTP.Decompression.Crc { /// /// Computes a CRC-32. The CRC-32 algorithm is parameterized - you /// can set the polynomial and enable or disable bit /// reversal. This can be used for GZIP, BZip2, or ZIP. /// /// /// This type is used internally by DotNetZip; it is generally not used /// directly by applications wishing to create, read, or manipulate zip /// archive files. /// internal class CRC32 { /// /// Indicates the total number of bytes applied to the CRC. /// public Int64 TotalBytesRead { get { return _TotalBytesRead; } } /// /// Indicates the current CRC for all blocks slurped in. /// public Int32 Crc32Result { get { return unchecked((Int32)(~_register)); } } /// /// Returns the CRC32 for the specified stream. /// /// The stream over which to calculate the CRC32 /// the CRC32 calculation public Int32 GetCrc32(System.IO.Stream input) { return GetCrc32AndCopy(input, null); } /// /// Returns the CRC32 for the specified stream, and writes the input into the /// output stream. /// /// The stream over which to calculate the CRC32 /// The stream into which to deflate the input /// the CRC32 calculation public Int32 GetCrc32AndCopy(System.IO.Stream input, System.IO.Stream output) { if (input == null) throw new Exception("The input stream must not be null."); unchecked { byte[] buffer = new byte[BUFFER_SIZE]; int readSize = BUFFER_SIZE; _TotalBytesRead = 0; int count = input.Read(buffer, 0, readSize); if (output != null) output.Write(buffer, 0, count); _TotalBytesRead += count; while (count > 0) { SlurpBlock(buffer, 0, count); count = input.Read(buffer, 0, readSize); if (output != null) output.Write(buffer, 0, count); _TotalBytesRead += count; } return (Int32)(~_register); } } /// /// Get the CRC32 for the given (word,byte) combo. This is a /// computation defined by PKzip for PKZIP 2.0 (weak) encryption. /// /// The word to start with. /// The byte to combine it with. /// The CRC-ized result. public Int32 ComputeCrc32(Int32 W, byte B) { return _InternalComputeCrc32((UInt32)W, B); } internal Int32 _InternalComputeCrc32(UInt32 W, byte B) { return (Int32)(crc32Table[(W ^ B) & 0xFF] ^ (W >> 8)); } /// /// Update the value for the running CRC32 using the given block of bytes. /// This is useful when using the CRC32() class in a Stream. /// /// block of bytes to slurp /// starting point in the block /// how many bytes within the block to slurp public void SlurpBlock(byte[] block, int offset, int count) { if (block == null) throw new Exception("The data buffer must not be null."); // bzip algorithm for (int i = 0; i < count; i++) { int x = offset + i; byte b = block[x]; if (this.reverseBits) { UInt32 temp = (_register >> 24) ^ b; _register = (_register << 8) ^ crc32Table[temp]; } else { UInt32 temp = (_register & 0x000000FF) ^ b; _register = (_register >> 8) ^ crc32Table[temp]; } } _TotalBytesRead += count; } /// /// Process one byte in the CRC. /// /// the byte to include into the CRC . public void UpdateCRC(byte b) { if (this.reverseBits) { UInt32 temp = (_register >> 24) ^ b; _register = (_register << 8) ^ crc32Table[temp]; } else { UInt32 temp = (_register & 0x000000FF) ^ b; _register = (_register >> 8) ^ crc32Table[temp]; } } /// /// Process a run of N identical bytes into the CRC. /// /// /// /// This method serves as an optimization for updating the CRC when a /// run of identical bytes is found. Rather than passing in a buffer of /// length n, containing all identical bytes b, this method accepts the /// byte value and the length of the (virtual) buffer - the length of /// the run. /// /// /// the byte to include into the CRC. /// the number of times that byte should be repeated. public void UpdateCRC(byte b, int n) { while (n-- > 0) { if (this.reverseBits) { uint temp = (_register >> 24) ^ b; _register = (_register << 8) ^ crc32Table[(temp >= 0) ? temp : (temp + 256)]; } else { UInt32 temp = (_register & 0x000000FF) ^ b; _register = (_register >> 8) ^ crc32Table[(temp >= 0) ? temp : (temp + 256)]; } } } private static uint ReverseBits(uint data) { unchecked { uint ret = data; ret = (ret & 0x55555555) << 1 | (ret >> 1) & 0x55555555; ret = (ret & 0x33333333) << 2 | (ret >> 2) & 0x33333333; ret = (ret & 0x0F0F0F0F) << 4 | (ret >> 4) & 0x0F0F0F0F; ret = (ret << 24) | ((ret & 0xFF00) << 8) | ((ret >> 8) & 0xFF00) | (ret >> 24); return ret; } } private static byte ReverseBits(byte data) { unchecked { uint u = (uint)data * 0x00020202; uint m = 0x01044010; uint s = u & m; uint t = (u << 2) & (m << 1); return (byte)((0x01001001 * (s + t)) >> 24); } } private void GenerateLookupTable() { crc32Table = new UInt32[256]; unchecked { UInt32 dwCrc; byte i = 0; do { dwCrc = i; for (byte j = 8; j > 0; j--) { if ((dwCrc & 1) == 1) { dwCrc = (dwCrc >> 1) ^ dwPolynomial; } else { dwCrc >>= 1; } } if (reverseBits) { crc32Table[ReverseBits(i)] = ReverseBits(dwCrc); } else { crc32Table[i] = dwCrc; } i++; } while (i!=0); } #if VERBOSE Console.WriteLine(); Console.WriteLine("private static readonly UInt32[] crc32Table = {"); for (int i = 0; i < crc32Table.Length; i+=4) { Console.Write(" "); for (int j=0; j < 4; j++) { Console.Write(" 0x{0:X8}U,", crc32Table[i+j]); } Console.WriteLine(); } Console.WriteLine("};"); Console.WriteLine(); #endif } private uint gf2_matrix_times(uint[] matrix, uint vec) { uint sum = 0; int i=0; while (vec != 0) { if ((vec & 0x01)== 0x01) sum ^= matrix[i]; vec >>= 1; i++; } return sum; } private void gf2_matrix_square(uint[] square, uint[] mat) { for (int i = 0; i < 32; i++) square[i] = gf2_matrix_times(mat, mat[i]); } /// /// Combines the given CRC32 value with the current running total. /// /// /// This is useful when using a divide-and-conquer approach to /// calculating a CRC. Multiple threads can each calculate a /// CRC32 on a segment of the data, and then combine the /// individual CRC32 values at the end. /// /// the crc value to be combined with this one /// the length of data the CRC value was calculated on public void Combine(int crc, int length) { uint[] even = new uint[32]; // even-power-of-two zeros operator uint[] odd = new uint[32]; // odd-power-of-two zeros operator if (length == 0) return; uint crc1= ~_register; uint crc2= (uint) crc; // put operator for one zero bit in odd odd[0] = this.dwPolynomial; // the CRC-32 polynomial uint row = 1; for (int i = 1; i < 32; i++) { odd[i] = row; row <<= 1; } // put operator for two zero bits in even gf2_matrix_square(even, odd); // put operator for four zero bits in odd gf2_matrix_square(odd, even); uint len2 = (uint) length; // apply len2 zeros to crc1 (first square will put the operator for one // zero byte, eight zero bits, in even) do { // apply zeros operator for this bit of len2 gf2_matrix_square(even, odd); if ((len2 & 1)== 1) crc1 = gf2_matrix_times(even, crc1); len2 >>= 1; if (len2 == 0) break; // another iteration of the loop with odd and even swapped gf2_matrix_square(odd, even); if ((len2 & 1)==1) crc1 = gf2_matrix_times(odd, crc1); len2 >>= 1; } while (len2 != 0); crc1 ^= crc2; _register= ~crc1; //return (int) crc1; return; } /// /// Create an instance of the CRC32 class using the default settings: no /// bit reversal, and a polynomial of 0xEDB88320. /// public CRC32() : this(false) { } /// /// Create an instance of the CRC32 class, specifying whether to reverse /// data bits or not. /// /// /// specify true if the instance should reverse data bits. /// /// /// /// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you /// want a CRC32 with compatibility with BZip2, you should pass true /// here. In the CRC-32 used by GZIP and PKZIP, the bits are not /// reversed; Therefore if you want a CRC32 with compatibility with /// those, you should pass false. /// /// public CRC32(bool reverseBits) : this( unchecked((int)0xEDB88320), reverseBits) { } /// /// Create an instance of the CRC32 class, specifying the polynomial and /// whether to reverse data bits or not. /// /// /// The polynomial to use for the CRC, expressed in the reversed (LSB) /// format: the highest ordered bit in the polynomial value is the /// coefficient of the 0th power; the second-highest order bit is the /// coefficient of the 1 power, and so on. Expressed this way, the /// polynomial for the CRC-32C used in IEEE 802.3, is 0xEDB88320. /// /// /// specify true if the instance should reverse data bits. /// /// /// /// /// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you /// want a CRC32 with compatibility with BZip2, you should pass true /// here for the reverseBits parameter. In the CRC-32 used by /// GZIP and PKZIP, the bits are not reversed; Therefore if you want a /// CRC32 with compatibility with those, you should pass false for the /// reverseBits parameter. /// /// public CRC32(int polynomial, bool reverseBits) { this.reverseBits = reverseBits; this.dwPolynomial = (uint) polynomial; this.GenerateLookupTable(); } /// /// Reset the CRC-32 class - clear the CRC "remainder register." /// /// /// /// Use this when employing a single instance of this class to compute /// multiple, distinct CRCs on multiple, distinct data blocks. /// /// public void Reset() { _register = 0xFFFFFFFFU; } // private member vars private UInt32 dwPolynomial; private Int64 _TotalBytesRead; private bool reverseBits; private UInt32[] crc32Table; private const int BUFFER_SIZE = 8192; private UInt32 _register = 0xFFFFFFFFU; } }