
Agora Video SDK README

The Agora Unity Video SDK supports iOS, Android, MacOS and Windows platform. For WebGL

support, please ask our staff for the Community beta before official support is available. This

document helps you quickly get started with the SDK and API-Examples. And it includes

resources that will help you on the migration and problem shooting need.

Prerequisites

● Unity Editor (2017 LTS or above)

● A developer account with Agora.io

SDK Package Structure
The RTC Plugin contains two main folders:

- Agora-Unity-RTC-SDK: contains library frameworks and C# level code.

- API-Example: simple demos that focuses on individual feature APIs. The latest update

can be found at the Agora-Unity-Quickstart repo.

Your AppID

Before you can build and run the project, you will need to add your AppID to the configuration.

Go to your developer account’s project console, create a new AppID or copy the AppID from an

existing project. Fill that AppID into the AppIdInput scriptable asset here:

https://sso.agora.io/en/signup
https://github.com/AgoraIO-Extensions/Agora-Unity-Quickstart/tree/release/4.0.0.5/API-Example-Unity
https://console.agora.io/projects

Note that you will need get a token if you AppID was generated with the Token authentication

option. In such case, if you don’t have a token server setup already, you may obtain a

temporary token from your developer console. Go to Project Management >More >Config on

that project. Under the Edit Project menu, select Generate Temp RTC Token. Enter the

channel name that you want to use.

If you created your AppID in test mode, then you don’t need to do the token generation for this

test. But keep in mind that in a production environment, you should use token authentication for

better security protection.

At this step, you should be able to test the demo App within the Unity Editor. Select any API-

example scene and run the test there.

From SDK version 4.0.0 and newer, a Home scene is added at the API-Examples folder. You

may test all the individual API examples in one build. To do that, just add all the scenes from

the subfolders into the build settings.

Player Settings for Building the Sample Application

Setting Plugin Identities

Normally the library identities have been setup with the bundled SDK plugins. In case of

manual override needed, follow the following steps:

For 64-bit Windows builds, go into Assets > Plugins > x86_64 folder, select Editor and

Standalone and then click Apply.

To ensure that the build plugin libraries don’t collide, disable the identities of the files in the x86

folder.

Do the opposite for building on a 32-bit Windows machine.

For MacOS, make sure Any CPU is selected. It is not automatically done for Unity version

2020.2 and up especially. See details in the MacOS Build section below.

Android Build

Select Android from the platform list and click Switch Platform.

Once Unity finishes the setup process, open the Player Settings and set a unique package

name, e.g., io.agora.gaming.video.hello.

Google's 64 bit App requirement implies that following settings are desired:

1. Change the Scripting backend to IL2CPP.

2. Select ARM64 for the Target Architecture.

https://android-developers.googleblog.com/2019/01/get-your-apps-ready-for-64-bit.html

Android Build Settings

For Unity Editor 2021.2.0 and up: the Android plugin folder needs to be renamed. Change

AgoraRtcEngineKit.plugin to AgoraRtcEngineKit.androidlib. Note that this change is not

compatible with earlier version of the Unity (e.g. 2017.x). Leave other settings as is.

iOS Build

Select iOS from the platform list and click Switch Platform.

The default build setting should work for most cases. The only custom settings are:

1. Change the Bundle Identifier to your own Bundle identifier so XCode can properly

codesign the application.

2. Ensure the microphone permission has a description to allow the user to know why

the microphone is being accessed by the application

3. Ensure the camera permission has a description to allow the user to know why the

camera is being accessed by the application

iOS Build Settings

Embedding Frameworks

Starting with SDK version 3.0.1, the iOS plugin frameworks are dynamically loaded and need to

be embedded into the libraries. The Post Processing build script BL_BuildPostProcess.cs

should have taken care of this. If your iOS build runs perfectly, then no need to perform the

following steps.

Just in case of anything missed on building your own projects, please be sure that all the iOS

Frameworks and library are put into Embedded section for XCode:

Make sure you do for all the items in the iOS folder:

Unity Editor Embedded Binary setting (Unity 2019 and up)

Embedding Frameworks in V4.x
If there is a XCode linker error about “framework was built for iOS + iOS Simulator”, like this

screen:

Configure XCode Project setting, choose “Yes” for Validate Workspace in Build Settings:

MacOS Build

Select “PC, Mac & Linux Standalone” from the platform list and click Switch Platform. Then

Select “Mac OS X” for the Target Platform. Besides regular App Store required information, it is

very important to fill in the Camera and Microphone usage description. Without this your app

may crash on MacOS Catalina or later for privacy restriction reasons.

MacOS Build Settings

Starting from Unity Editor 2020.2 and MacOS Big Sur, Apple made Silicon CPU is added in the

Architecture options. Make sure you configure AgoraRtcWrapperUnity.bundle module to

match the target in Build Settings. See follow screenshots:

Codesigning for Notarization

For Notarization validation, Agora library frameworks need to be code-signed with the main

build executable together. The SDK provided helper scripts to get your signing step more

convenient. See instructions below.

Codesign instruction after mac build

use scripts provided in Unity SDK project folder: Assets/AgoraEngine/Scripts/AgoraTools

Assume the project folder is ${project_path}, your build is output to ${build_folder}, your app is

TestMAC.app

Steps:

1. cd ${build_folder}

2. ${project_path}/Assets/Agora-RTC-Plugin/Agora-Unity-RTC-

SDK/Tools/prep_codesign.sh TestMAC.app

3. find the signature on the Mac with this command /usr/bin/security find-identity -v -p

codesigning （there is a hint from the script also）

4. (export SIGNATURE="<your signature>"; ${project_path}/Assets/ Agora-RTC-

Plugin/Agora-Unity-RTC-SDK/Tools/signcode.sh TestMAC.app)

5. Verify that the result

TestMac.app: valid on disk
TestMac.app: satisfies its Designated Requirement

Windows Build

Select “PC, Mac & Linux Standalone” from the platform list and click Switch Platform. Then

Select “Windows” for the Target Platform. Also choose x86 for 32-bit or x86_64 for 64-bit

architecture according to your Application target.

Remember to set the appropriate Plugin library identities as described in the earlier section of

this README file.

Upgrading SDK
Please check the online Migration guide when upgrading from Version 3.x

to 4.x. Also, it is recommended to:
o Remove the entire file tree under Assets/AgoraEngine

How to Clean up old Unity Asset Cache
o Refer to this documentation link to find the location of the cache folder:

https://docs.unity3d.com/Manual/AssetPackages.html

o Note that the Asset Store fold may have a version attached to it. For example,

this is the current location of the cache to the Agora Video SDK on MacOS:

~/Library/Unity/Asset Store-5.x/Agoraio/ScriptingVideo

o Delete all packages in that folder

Some Trouble Shooting FAQs

Q: App crashed! Why?

A: 99% is that the privacy policy is violated on the running OS. Take MacOS for example, you

must declare the description of the camera usage in the Player Settings. Sometimes, your

standalone App couldn’t get the permission even you had set it in the Unity Player Settings.

You must find ways to make sure that is taken care of at the OS setting level. There are

solutions on the Internet you can find. You may also come to the Slack groups to look for help

(see the links in Resources below).

Q: Do you support WebGL?

A: No, not in this version. But it is on the roadmap. Please come to our Slack channel and ask

about the open beta program.

Q: Can I share screen with my camera feed too?

A: Yes, it is now supported by this SDK. See the DualCamera API example for reference

project.

More FAQs: https://docs.agora.io/en/Video/faq?platform=Unity

Other Resources
● GitHub demos: https://github.com/AgoraIO-Extensions/Agora-Unity-Quickstart

○ Note that this repo contain both legacy (version 3.x) and new SDK (version 4.x)

examples. Please make sure you are on the right branch.

● The complete API documentation is available in the Document Center.

● For technical support, submit a ticket using the Agora Dashboard or

https://docs.agora.io/en/voice-calling/develop/migration-guide
https://docs.unity3d.com/Manual/AssetPackages.html
https://docs.agora.io/en/Video/faq?platform=Unity
https://github.com/AgoraIO-Extensions/Agora-Unity-Quickstart
https://docs.agora.io/en/api-reference?platform=unity
https://dashboard.agora.io/

● Join our slack community: https://bit.ly/39j4I5h

● Help each other at https://agoraiodev.slack.com/messages/unity-help-me

● Developer relations team: devrel@agora.io

● Release note: https://docs.agora.io/en/video-calling/reference/release-notes

https://bit.ly/39j4I5h
https://agoraiodev.slack.com/messages/unity-help-me
mailto:devrel@agora.io
https://docs.agora.io/en/video-calling/reference/release-notes

	Your AppID
	Player Settings for Building the Sample Application
	Setting Plugin Identities
	Android Build
	iOS Build
	MacOS Build
	Codesigning for Notarization
	Codesign instruction after mac build
	Windows Build
	Some Trouble Shooting FAQs

